Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 112, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433139

RESUMO

Down syndrome (DS) arises from a genetic anomaly characterized by an extra copy of chromosome 21 (exCh21). Despite high incidence of congenital diseases among DS patients, direct impacts of exCh21 remain elusive. Here, we established a robust DS model harnessing human-induced pluripotent stem cells (hiPSCs) from mosaic DS patient. These hiPSC lines encompassed both those with standard karyotype and those carrying an extra copy of exCh21, allowing to generate isogenic cell lines with a consistent genetic background. We unraveled that exCh21 inflicted disruption upon the cellular transcriptome, ushering in alterations in metabolic processes and triggering DNA damage. The impact of exCh21 was also manifested in profound modifications in chromatin accessibility patterns. Moreover, we identified two signature metabolites, 5-oxo-ETE and Calcitriol, whose biosynthesis is affected by exCh21. Notably, supplementation with 5-oxo-ETE promoted DNA damage, in stark contrast to the protective effect elicited by Calcitriol against such damage. We also found that exCh21 disrupted cardiogenesis, and that this impairment could be mitigated through supplementation with Calcitriol. Specifically, the deleterious effects of 5-oxo-ETE unfolded in the form of DNA damage induction and the repression of cardiogenesis. On the other hand, Calcitriol emerged as a potent activator of its nuclear receptor VDR, fostering amplified binding to chromatin and subsequent facilitation of gene transcription. Our findings provide a comprehensive understanding of exCh21's metabolic implications within the context of Down syndrome, offering potential avenues for therapeutic interventions for Down syndrome treatment.


Assuntos
Síndrome de Down , Humanos , Síndrome de Down/genética , Calcitriol/farmacologia , Cromatina , Linhagem Celular , Dano ao DNA
2.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464026

RESUMO

Aims: The precise molecular drivers of abdominal aortic aneurysm (AAA) remain unclear. Thymidine phosphorylase (TYMP) contributes to increased platelet activation, thrombosis, and inflammation, all of which are key factors in AAA development. Additionally, TYMP suppresses the proliferation of vascular smooth muscle cells (VSMCs), which are central to the development and progression of AAA. We hypothesize that TYMP plays a key role in AAA development. Methods and Results: We conducted a histological study using human AAA samples and normal abdominal aortas, revealing heightened levels of TYMP in human AAA vessel walls. To validate this observation, we utilized an Ang II perfusion-induced AAA model in wild-type C57BL/6J (WT) and Tymp-/- mice, feeding them a Western diet (TD.88137) starting from 4 weeks of age. We found that Tymp-/- mice were protected from Ang II perfusion-induced AAA formation. Furthermore, by using TYMP-expressing VSMCs as well as primarily cultured VSMCs from WT and Tymp-/- mice, we elucidated the essential role of TYMP in regulating MMP2 expression and activation. TYMP deficiency or inhibition by tipiracil, a selective TYMP inhibitor, led to reduced MMP2 production, release, and activation in VSMCs. Additionally, TYMP was found to promote pro-inflammatory cytokine expression systemically, and its absence attenuates TNF-α-stimulated activation of MMP2 and AKT. By co-culturing VSMCs and platelets, we observed that TYMP-deficient platelets had a reduced inhibitory effect on VSMC proliferation compared to WT platelets. Moreover, TYMP appeared to enhance the expression of activated TGFß1 in cultured VSMCs in vitro and in human AAA vessel walls in vivo. TYMP also boosted the activation of thrombospondin-1 type 1 repeat domain-enhanced TGFß1 signaling, resulting in increased connective tissue growth factor production. Conclusion: Our findings collectively demonstrated that TYMP serves as a novel regulatory force in vascular biology, exerting influence over VSMC functionality and inflammatory responses that promote the development of AAA.

3.
J Transl Med ; 22(1): 297, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38515161

RESUMO

BACKGROUND: The aberrant secretion and excessive deposition of type I collagen (Col1) are important factors in the pathogenesis of myocardial fibrosis in dilated cardiomyopathy (DCM). However, the precise molecular mechanisms underlying the synthesis and secretion of Col1 remain unclear. METHODS AND RESULTS: RNA-sequencing analysis revealed an increased HtrA serine peptidase 1 (HTRA1) expression in patients with DCM, which is strongly correlated with myocardial fibrosis. Consistent findings were observed in both human and mouse tissues by immunoblotting, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, and immunofluorescence analyses. Pearson's analysis showed a markedly positive correlation between HTRA1 level and myocardial fibrosis indicators, including extracellular volume fraction (ECV), native T1, and late gadolinium enhancement (LGE), in patients with DCM. In vitro experiments showed that the suppression of HTRA1 inhibited the conversion of cardiac fibroblasts into myofibroblasts and decreased Col1 secretion. Further investigations identified the role of HTRA1 in promoting the formation of endoplasmic reticulum (ER) exit sites, which facilitated the transportation of Col1 from the ER to the Golgi apparatus, thereby increasing its secretion. Conversely, HTRA1 knockdown impeded the retention of Col1 in the ER, triggering ER stress and subsequent induction of ER autophagy to degrade misfolded Col1 and maintain ER homeostasis. In vivo experiments using adeno-associated virus-serotype 9-shHTRA1-green fluorescent protein (AAV9-shHTRA1-GFP) showed that HTRA1 knockdown effectively suppressed myocardial fibrosis and improved left ventricular function in mice with DCM. CONCLUSIONS: The findings of this study provide valuable insights regarding the treatment of DCM-associated myocardial fibrosis and highlight the therapeutic potential of targeting HTRA1-mediated collagen secretion.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Animais , Humanos , Camundongos , Colágeno Tipo I , Meios de Contraste , Fibrose , Gadolínio , Miocárdio/patologia
4.
Sci Rep ; 14(1): 6529, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499711

RESUMO

Heart transplantation is the gold standard for treating patients with advanced heart failure. Although improvements in immunosuppressive therapies have significantly reduced the frequency of cardiac graft rejection, the incidences of T cell-mediated rejection (TCMR) and antibody-mediated rejection remain almost unchanged. A four-archetype analysis (4AA) model, developed by Philip F. Halloran, illustrated this problem well. It provided a new dimension to improve the accuracy of diagnoses and an independent system for recalibrating the histology guidelines. However, this model was based on the invasive method of endocardial biopsy, which undoubtedly increased the postoperative risk of heart transplant patients. Currently, little is known regarding the associated genes and specific functions of the different phenotypes. We performed bioinformatics analysis (using machine-learning methods and the WGCNA algorithm) to screen for hub-specific genes related to different phenotypes, based Gene Expression Omnibus accession number GSE124897. More immune cell infiltration was observed with the ABMR, TCMR, and injury phenotypes than with the stable phenotype. Hub-specific genes for each of the four archetypes were verified successfully using an external test set (accession number GSE2596). Logistic-regression models based on TCMR-specific hub genes and common hub genes were constructed with accurate diagnostic utility (area under the curve > 0.95). RELA, NFKB1, and SOX14 were identified as transcription factors important for TCMR/injury phenotypes and common genes, respectively. Additionally, 11 Food and Drug Administration-approved drugs were chosen from the DrugBank Database for each four-archetype model. Tyrosine kinase inhibitors may be a promising new option for transplant rejection treatment. KRAS signaling in cardiac transplant rejection is worth further investigation. Our results showed that heart transplant rejection subtypes can be accurately diagnosed by detecting expression of the corresponding specific genes, thereby enabling precise treatment or medication.


Assuntos
Transplante de Coração , Transplante de Rim , Humanos , Transplante de Coração/efeitos adversos , Rejeição de Enxerto , Transplante de Rim/métodos , Medicina de Precisão , Doadores de Tecidos , Biópsia , Biologia Computacional , Fatores de Transcrição SOXB2
5.
Phytochem Anal ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279552

RESUMO

INTRODUCTION: Lignin has great potential as the most abundant renewable phenolic polymer. Studies have shown that lignin structure varies depending on different sources and different extraction methods. However, there are few studies on lignin in kudzu root residue. OBJECTIVES: The aim of the study was to explore optimal extraction conditions of Pueraria lobata residue lignin (PLL) with deep eutectic solvents (DESs) and characterise the structure and morphology of PLL. METHODS: Firstly, the chemical composition of kudzu root residue was determined by the Van-soest method. Then, betaine was used as hydrogen bond acceptor (HBA), nine kinds of common acids and alcohol were selected as hydrogen bond donor (HBD) to synthesise a DES to extract lignin from kudzu root residue. The influence of conditions on the extraction of PLL was explored by a betaine-based DES according to a single-factor experiment, and then the best process of PLL extraction was determined by an orthogonal experiment. Finally, the morphology and structure of PLL were analysed by scanning electron microscope (SEM), thermogravimetric analysis (TGA), gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and NMR. RESULTS: Cellulose, hemicellulose, lignin, and ash content in kudzu root residue were 41.13%, 16.39%, 25.03%, and 0.41%, respectively. When the DES consisted of betaine and formic acid, the solid-liquid ratio was 1:45, the extraction time was 5.5 h at 160°C, the extraction yield of lignin was 89.29%, and the purity was 83.01%. PLL was composed of interconnected spherical particles with good thermal stability and narrow polydispersity index (PDI) distribution. FTIR and 2D-heteronuclear singular quantum correlation (HSQC) NMR illustrated that PLL was a typical G-type and S-type lignin. CONCLUSION: This study would fill the gap of research on lignin in kudzu root residue and provide a theoretical reference for the utilisation of lignin in kudzu roots as well as a new thinking for the recycling of kudzu root resources.

6.
Colloids Surf B Biointerfaces ; 229: 113435, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437413

RESUMO

Inorganic antibacterial nanomaterials play an increasingly important role in addressing the growing threat of drug-resistant bacteria. Graphene oxide-silver nanoparticles composite (GO-AgNPs), as a kind of inorganic nanomaterials, have excellent antibacterial properties, showing promising potential in biomedical field. However, GO-AgNPs are terribly prone to sedimentation due to aggregation in physiological solutions, along with its non-environmental issues during the synthesis process, seriously limits the antibacterial application of GO-AgNPs in the biomedical field. To solve this problem, herein, polyethylene glycol-graphene oxide-silver nanoparticles composite (GO-AgNPs-PEG) were prepared by modifying GO-AgNPs with polyethylene glycol to enhance their dispersion stability in physiological solutions. In addition, GO-AgNPs-PEG were prepared with using the natural product gallic acid as a reductant and stabilizer, exhibiting the characteristic of environmentally friendly. Meanwhile, the dispersion stability and antibacterial activity of GO-AgNPs-PEG were characterized by various technical methods, it was found that GO-AgNPs-PEG can be stably dispersed in a variety of physiological solutions (e.g., physiological saline, phosphate buffer solution, Luria-Bertani medium, Murashige and Skoog medium) for more than one week. Moreover, the antibacterial properties of GO-AgNPs-PEG in physiological solutions were significantly better than those of GO-AgNPs. Furthermore, it was discovered that the antibacterial mechanism of GO-AgNPs-PEG was probably associated to destroying the integrity of bacterial cell walls and membranes. The findings in this work can provide new ideas and references for the development of new inorganic antibacterial nanomaterials with stable dispersion in physiological solutions.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Polietilenoglicóis , Prata/farmacologia , Antibacterianos/farmacologia
7.
Front Chem ; 10: 905781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572121

RESUMO

The adoption of plant-derived natural products to synthesize metal nanoparticles and their complexes has the advantages of mild reaction conditions, environmental protection, sustainability and simple operation compared with traditional physical or chemical synthesis methods. Herein, silver nanoparticles (AgNPs) were in situ synthesized on the surface of graphene oxide (GO) by a "one-pot reaction" to prepare graphene oxide-silver nanoparticles composite (GO-AgNPs) based on using AgNO3 as the precursor of AgNPs and gallic acid (GA) as the reducing agent and stabilizer. The size and morphology of GO-AgNPs were characterized by ultraviolet-visible spectrophotometer (Uv-vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM), X-ray diffractometer (XRD) and dynamic light scattering (DLS). The effects of pH, temperature, time and material ratio on the synthesis of GO-AgNPs were investigated experimentally. The results showed that ideal GO-AgNPs could be prepared under the conditions of pH = 9, 45°C, 2 h and the 2:1 of molar ratio of AgNO3 to GA. The AgNPs within GO-AgNPs are highly crystalline spherical particles with moderate density on the surface of GO, and the size of AgNPs is relatively uniform and determined to be about 8.19 ± 4.21 nm. The research results will provide new ideas and references for the green synthesis of metal nanoparticles and their complexes using plant-derived natural products as the reducing agent and stabilizer.

8.
Polymers (Basel) ; 14(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35215680

RESUMO

Pathogens, especially drug-resistant pathogens caused by the abuse of antibiotics, have become a major threat to human health and public health safety. The exploitation and application of new antibacterial agents is extremely urgent. As a natural biopolymer, cellulose has recently attracted much attention due to its excellent hydrophilicity, economy, biocompatibility, and biodegradability. In particular, the preparation of cellulose-based hydrogels with excellent structure and properties from cellulose and its derivatives has received increasing attention thanks to the existence of abundant hydrophilic functional groups (such as hydroxyl, carboxy, and aldehyde groups) within cellulose and its derivatives. The cellulose-based hydrogels have broad application prospects in antibacterial-related biomedical fields. The latest advances of preparation and antibacterial application of cellulose-based hydrogels has been reviewed, with a focus on the antibacterial applications of composite hydrogels formed from cellulose and metal nanoparticles; metal oxide nanoparticles; antibiotics; polymers; and plant extracts. In addition, the antibacterial mechanism and antibacterial characteristics of different cellulose-based antibacterial hydrogels were also summarized. Furthermore, the prospects and challenges of cellulose-based antibacterial hydrogels in biomedical applications were also discussed.

9.
Front Cardiovasc Med ; 8: 627380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124185

RESUMO

Objective: To investigate the N6-methyladenosine (m6A) modification and the expressions of the m6A regulatory genes in the acute aortic dissection (AD). Methods: MeRIP-seq and RNA-seq experiments of aortic media tissue samples obtained from AD (n = 4) and Controls (n = 4) were conducted. m6A methylation quantification was used to measure the total mRNA m6A level. The five m6A regulators mRNA expressions were analyzed by quantitative polymerase chain reaction (qPCR). Western blot analyses and immunofluorescence staining were used to detect the difference of METTL14 protein expression in the aortas of AD and Normal. Results: Among AD patients, we detected significantly elevated levels of m6A in total RNA. Compared with the normal group, the up methylated coding genes of AD were primarily enriched in the processes associated with extracellular fibril organization, while the genes with down methylation were enriched in the processes associated with cell death regulation. Furthermore, many differentially methylated m6A sites (DMMSs) coding proteins were mainly annotated during the extracellular matrix and inflammatory responses. Conclusions: These findings indicate that differential m6A methylation and m6A regulatory genes, including MTEEL14 and FTO, may act on functional genes through RNA modification, thereby regulating the pathogenesis of aortic dissection.

10.
Int Heart J ; 62(1): 127-134, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33455984

RESUMO

Mutations in the sarcomeric protein filamin C (FLNC) gene have been linked to hypertrophic cardiomyopathy (HCM), as they have been determined to increase the risk of ventricular arrhythmia and sudden death. Thus, in this study, we identified a novel missense mutation of FLNC in a Chinese family with HCM, and, interestingly, a second novel truncating mutation of MYLK2 was discobered in one family member with different phenotype.We performed whole-exome sequencing in a Chinese family with HCM of unknown cause. To determine and confirm the function of a novel mutation of FLNC, we introduced the mutant and wild-type gene into AC16 cells (human cardiomyocytes): we then used western blotting to analyze the expression of FLNC in subcellular fractions, and confocal microscope to observe the subcellular distribution of the protein.As per our findings, we were able to identify a novel missense single nucleotide variant (FLNC c.G5935A [p.A1979T]) in the family, which segregates with the disease. FLNC expression levels were observed to be equivalent in both wild-type and p.A1979T cardiomyocytes. However, the expression of the mutant protein has resulted in cytoplasmic protein aggregations, in contrast to wild-type FLNC, which was distributed in the cytoplasm and did not form aggregates. Unexpectedly, a second truncating mutation, NM_033118:exon8:c.G1138T:p.E380X of the MYLK2 gene, was identified in the mother of the proband with dilated cardiomyopathy, which was not found in other subjects.We then identified the FLNC A1979T mutation as a novel pathogenic variant associated with HCM in a Chinese family as well as a second causal mutation in a family member with a distinct phenotype. The possibility that there is more than one causal mutation in cardiomyopathy warrants clinical attention, especially for patients with atypical clinical features.


Assuntos
Povo Asiático/genética , Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/genética , Filaminas/genética , Quinase de Cadeia Leve de Miosina/genética , Adulto , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/fisiopatologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Morte Súbita Cardíaca/epidemiologia , Feminino , Predisposição Genética para Doença , Humanos , Mutação de Sentido Incorreto/genética , Miócitos Cardíacos/ultraestrutura , Linhagem , Fenótipo , Fatores de Risco , Fibrilação Ventricular/epidemiologia , Fibrilação Ventricular/mortalidade , Sequenciamento do Exoma/métodos
11.
PeerJ ; 8: e10336, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240650

RESUMO

BACKGROUND: Foam cells (FCs) play crucial roles in the process of all stages of atherosclerosis. Smooth muscle cells (SMCs) and macrophages are the major sources of FCs. This study aimed to identify the common molecular mechanism in these two types of FCs. METHODS: GSE28829, GSE43292, GSE68021, and GSE54666 were included to identify the differentially expressed genes (DEGs) associated with FCs derived from SMCs and macrophages. Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed by using the DAVID database. The co-regulated genes associated with the two origins of FCs were validated (GSE9874), and their expression in vulnerable atherosclerosis plaques (GSE120521 and GSE41571) was assessed. RESULTS: A total of 432 genes associated with FCs derived from SMCs (SMC-FCs) and 81 genes associated with FCs derived from macrophages (M-FCs) were identified, and they were mainly involved in lipid metabolism, inflammation, cell cycle/apoptosis. Furthermore, three co-regulated genes associated with FCs were identified: GLRX, RNF13, and ABCA1. These three common genes showed an increased tendency in unstable or ruptured plaques, although in some cases, no statistically significant difference was found. CONCLUSIONS: DEGs related to FCs derived from SMCs and macrophages have contributed to the understanding of the molecular mechanism underlying the formation of FCs and atherosclerosis. GLRX, RNF13, and ABCA1 might be potential targets for atherosclerosis treatment.

12.
Life Sci ; 256: 117882, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32497633

RESUMO

AIMS: Angiotensin II (Ang II) induces aortic dissection (AD) via regulation of pathological changes in vascular smooth muscle cells (VSMCs). However, the molecular mechanisms involved are not fully understood. The aim of this study was to evaluate the potential role of the proto-oncogene non-receptor cellular Abelson tyrosine kinase (c-Abl) in Ang II-induced VSMC phenotypic transformation and apoptosis. MAIN METHODS: Lentiviral transfection and short hairpin RNA (shRNA) were used to enhance or inhibit c-Abl in cultured VSMCs. In addition, C57BL/6 and Abl1 gene knockout heterozygous (c-Abl-/+) mice were infused with Ang II, with or without c-Abl inhibitor (STI571) treatment. The incidence of AD was evaluated in vivo, while the molecular and pathological features of VSMC phenotypic transformation and apoptosis were evaluated in vitro and in vivo. KEY FINDINGS: Ang II infusion induced a substantial incidence of AD in vivo (27%; 8/30), while STI571 intragastric gavage or Abl1 knockout reduced the incidence of AD to 13% (4/30) and 7% (2/30), respectively. The results of subsequent studies showed that c-Abl overexpression enhanced the Ang II-induced apoptosis and synthetic phenotypic transformation of VSMCs in vitro, while inhibition of c-Abl activity with STI571 or Abl1 gene knockout significantly attenuated the Ang II-induced apoptosis and synthetic phenotypic transformation of VSMCs both in vivo and in vitro. SIGNIFICANCE: Activation of c-Abl may be important for the phenotypic transformation and apoptosis of VSMCs underlying the Ang II-induced AD. Targeted inhibition of c-Abl may prevent Ang II-induced AD via attenuation of the pathological changes of VSMCs.


Assuntos
Dissecção Aórtica/patologia , Apoptose/genética , Miócitos de Músculo Liso/patologia , Proteínas Proto-Oncogênicas c-abl/genética , Dissecção Aórtica/genética , Angiotensina II/toxicidade , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Músculo Liso Vascular/patologia , Fenótipo
13.
Orphanet J Rare Dis ; 15(1): 101, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321550

RESUMO

BACKGROUND: Rubinstein-Taybi syndrome (RTS) is a rare, congenital, plurimalformative, and neurodevelopmental disorder. Previous studies have reported that large deletions contribute to more severe RTS phenotypes than those caused by CREBBP point mutations, suggesting a concurrent pathogenetic role of flanking genes, typical of contiguous gene syndromes, but the detailed genetics are unclear. RESULTS: This study presented a rare case of Rubinstein-Taybi (RT) syndrome with serious cardiac abnormalities. Based on the clinical and genetic analysis of the patient, the ADCY9 gene deletion was highlighted as a plausible explanation of cardiac abnormalities. In adcy9 morphant zebrafish, cardiac malformation was observed. Immunofluorescence study disclosed increased macrophage migration and cardiac apoptosis. RNA sequencing in zebrafish model highlighted the changes of a number of genes, including increased expression of the mmp9 gene which encodes a matrix metalloproteinase with the main function to degrade and remodel extracellular matrix. CONCLUSIONS: In this study, we identified a plausible new candidate gene ADCY9 of CHD through the clinical and genetic analysis of a rare case of Rubinstein-Taybi (RT) syndrome with serious cardiac abnormalities. By functional study of zebrafish, we demonstrated that deletion of adcy9 is the causation for the cardiac abnormalities. Cardiac apoptosis and increased expression of the MMP9 gene are involved in the pathogenesis.


Assuntos
Síndrome de Rubinstein-Taybi , Adenilil Ciclases , Animais , Proteína de Ligação a CREB/genética , Deleção de Genes , Humanos , Fenótipo , Síndrome de Rubinstein-Taybi/genética , Peixe-Zebra/genética
14.
J Thorac Dis ; 10(8): 4733-4740, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30233845

RESUMO

BACKGROUND: Mutation of the ACTA2 (α-2 smooth muscle actin) gene accounts for ~15% of all cases of familial thoracic aortic aneurysms and dissections. Surprisingly, no severe vascular phenotypes were observed at baseline in mice carrying this gene mutation. Our aim was to explore whether mutation of ACTA2 promotes the development of aneurysms or dissections in the presence of angiotensin II (AngII) and to determine whether this mutation has an impact on the phenotypic modulation and apoptosis mediated by AngII in vascular smooth muscle cells (VSMCs). METHODS: Mice were divided into three groups: AngII stimulated-wild-type (WT) (AngII) and ACTA2-/- mice (ACTA2) group, in which AngII were administered subcutaneously into 8-week-old C57 mice and ACTA2-/- mice, respectively, for 4 weeks using osmotic minipumps, and the control group (WT), in which the WT mice were infused with normal saline (NS). Ultrasound was performed to quantify lumen diameters. RT-qPCR and Western blot were used to assess gene expression, and histobiochemistry was used to evaluate the pathological changes in the thoracoabdominal aortas. TUNEL was used to assess apoptosis in VSMCs. RESULTS: Compared with the AngII- group, the ACTA2 mice exhibited more severity of dilated lumena of the aortas, a significantly increased expression of osteopontin (OPN), an elevated ratio of Bax/Bcl-2, increased apoptosis, and a decreased expression of α-smooth muscle actin (α-SMA). CONCLUSIONS: Knockout of ACTA2 promoted AngII induced progressive lumen dilation of the aortas, apoptosis, and the phenotypic modulation in VSMCs in mice.

15.
Sci Rep ; 8(1): 10508, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002401

RESUMO

This research focused on the cell wall structure and its mechanical properties of down-regulated Coumaroyl shikimate 3-hydroxylase (C3H) transgenic poplar and down-regulated hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) transgenic poplar (Populus alba × P. glandulosa cv '84 k'). The wood samples with respect to microstructure, the longitudinal elastic modulus (MOE) and hardness of wood fiber secondary cell wall were investigated. The results show that the lignin contents in the two transgenic poplar woods were lower than non-modified wood. The C3H transgenic poplar and HCT transgenic poplar have more than 18.5% and 16.1% cellulose crystalline regions than non-modified poplar respectively. The diameter of the fiber cell and the vessel element of transgenic poplars are smaller. Double radial vessel cell wall thicknesses of both transgenic poplars were smaller than non-modified poplar. Cell wall ratios for the transgenic poplar were higher than non-modified poplar and cell wall density was significantly lower in both C3H and HCT transgenic poplar. The cell wall MOEs of C3H and HCT transgenic poplar was 5.8% and 7.0% higher than non-modified poplar. HCT can be more effective than C3H to modify the trees by considerably increasing mechanical properties of the cell wall.


Assuntos
Parede Celular/ultraestrutura , Proteínas de Plantas/genética , Populus/citologia , Madeira/citologia , Aciltransferases/genética , Aciltransferases/metabolismo , Parede Celular/metabolismo , Celulose , Engenharia Genética/métodos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Populus/genética , Interferência de RNA , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...