Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Int J Biol Sci ; 20(10): 4077-4097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113710

RESUMO

Triptolide (TP), known for its effectiveness in treating various rheumatoid diseases, is also associated with significant hepatotoxicity risks. This study explored Catalpol (CAT), an iridoid glycoside with antioxidative and anti-inflammatory effects, as a potential defense against TP-induced liver damage. In vivo and in vitro models of liver injury were established using TP in combination with different concentrations of CAT. Metabolomics analyses were conducted to assess energy metabolism in mouse livers. Additionally, a Seahorse XF Analyzer was employed to measure glycolysis rate, mitochondrial respiratory functionality, and real-time ATP generation rate in AML12 cells. The study also examined the expression of proteins related to glycogenolysis and gluconeogenesis. Using both in vitro SIRT1 knockout/overexpression and in vivo liver-specific SIRT1 knockout models, we confirmed SIRT1 as a mechanism of action for CAT. Our findings revealed that CAT could alleviate TP-induced liver injury by activating SIRT1, which inhibited lysine acetylation of hypoxia-inducible factor-1α (HIF-1α), thereby restoring the balance between glycolysis and oxidative phosphorylation. This action improved mitochondrial dysfunction and reduced glucose metabolism disorder and oxidative stress caused by TP. Taken together, these insights unveil a hitherto undocumented mechanism by which CAT ameliorates TP-induced liver injury, positioning it as a potential therapeutic agent for managing TP-induced hepatotoxicity.


Assuntos
Diterpenos , Compostos de Epóxi , Glucose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Glucosídeos Iridoides , Fígado , Estresse Oxidativo , Fenantrenos , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Fenantrenos/farmacologia , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Glucose/metabolismo , Masculino , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Camundongos Endogâmicos C57BL
2.
Adv Sci (Weinh) ; 11(32): e2400978, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39189522

RESUMO

Nonsense-mediated decay (NMD) and autophagy play pivotal roles in restricting virus infection in plants. However, the interconnection between these two pathways in viral infections has not been explored. Here, it is shown that overexpression of NbSMG7 and NbUPF3 attenuates cucumber green mottle mosaic virus (CGMMV) infection by recognizing the viral internal termination codon and vice versa. NbSMG7 is subjected to autophagic degradation, which is executed by its interaction with one of the autophagy-related proteins, NbATG8i. Mutation of the ATG8 interacting motif (AIM) in NbSMG7 (SMG7mAIM1) abolishes the interaction and comprises its autophagic degradation. Silencing of NbSMG7 and NbATG8i, or NbUPF3 and NbATG8i, compared to silencing each gene individually, leads to more virus accumulations, but overexpression of NbSMG7 and NbATG8i fails to achieve more potent virus inhibition. When CGMMV is co-inoculated with NbSMG7mAIM1 or with NbUPF3, compared to co-inoculating with NbSMG7 in NbATG8i transgene plants, the inoculated plants exhibit milder viral phenotypes. These findings reveal that NMD-mediated virus inhibition is impaired by the autophagic degradation of SMG7 in a negative feedback loop, and a novel regulatory interplay between NMD and autophagy is uncovered, providing insights that are valuable in optimizing strategies to harness NMD and autophagy for combating viral infections.


Assuntos
Autofagia , Doenças das Plantas , Autofagia/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Retroalimentação Fisiológica , Tobamovirus/genética , Tobamovirus/metabolismo , Nicotiana/virologia , Nicotiana/genética , Nicotiana/metabolismo
3.
J Integr Plant Biol ; 66(8): 1557-1560, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38934772

RESUMO

Two guanine base editors created using an engineered N-methylpurine DNA glycosylase with CRISPR systems achieved targeted G-to-T editing with 4.94-12.50% efficiency in rice (Oryza sativa). The combined use of the DNA glycosylase and deaminases enabled co-editing of target guanines with adenines or cytosines.


Assuntos
Edição de Genes , Guanina , Oryza , Oryza/genética , Edição de Genes/métodos , Guanina/metabolismo , Sistemas CRISPR-Cas/genética , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Timina/metabolismo
4.
Microbiol Res ; 285: 127745, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38733724

RESUMO

The use of biological agents offers a sustainable alternative to chemical control in managing plant diseases. In this study, Bacillus velezensis IFST-221 was isolated from the rhizosphere of a healthy maize plant amidst a population showing severe disease symptoms. The investigation demonstrated a broad-spectrum antagonistic activity of IFST-221 against eight species of pathogenic ascomycetes and oomycetes, suggesting its potential utility in combating plant diseases like maize ear rot and cotton Verticillium wilt. Additionally, our study unveiled that IFST-221 has demonstrated significant plant growth-promoting properties, particularly in maize, cotton, tomato, and broccoli seedlings. This growth promotion was linked to its ability to produce indole-3-acetic acid, nitrogen fixation, phosphate and potassium solubilization, and biofilm formation in laboratory conditions. A complete genome sequencing of IFST-221 yielded a genome size of 3.858 M bp and a GC content of 46.71%. The genome analysis identified 3659 protein-coding genes, among which were nine secondary metabolite clusters with known antimicrobial properties. Additionally, three unknown compounds with potentially novel properties were also predicted from the genomic data. Genome mining also identified several key genes associated with plant growth regulation, colonization, and biofilm formation. These findings provide a compelling case for the application of B. velezensis IFST-221 in agricultural practices. The isolate's combined capabilities of plant growth promotion and antagonistic activity against common plant pathogens suggest its promise as an integrated biological agent in disease management and plant productivity enhancement.


Assuntos
Bacillus , Biofilmes , Genoma Bacteriano , Doenças das Plantas , Rizosfera , Bacillus/genética , Bacillus/isolamento & purificação , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Biofilmes/crescimento & desenvolvimento , Zea mays/microbiologia , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal , Genômica , Sequenciamento Completo do Genoma , Solanum lycopersicum/microbiologia , Filogenia , Microbiologia do Solo , Reguladores de Crescimento de Plantas/metabolismo , Fixação de Nitrogênio , Metabolismo Secundário , Brassica/microbiologia , Gossypium/microbiologia , Composição de Bases , Agentes de Controle Biológico , Antibiose
5.
Plant Commun ; 5(8): 100926, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38725246

RESUMO

CRISPR-mediated base editors have been widely used to correct defective alleles and create novel alleles by artificial evolution for the rapid genetic improvement of crops. The editing capabilities of base editors strictly rely on the performance of various nucleotide modification enzymes. Compared with the well-developed adenine base editors (ABEs), cytosine base editors (CBEs) and dual base editors suffer from unstable editing efficiency and patterns at different genomic loci in rice, significantly limiting their application. Here, we comprehensively examined the base editing activities of multiple evolved TadA8e variants in rice. We found that both TadA-CDd and TadA-E27R/N46L achieved more robust C-to-T editing than previously reported hyperactive hAID∗Δ, and TadA-CDd outperformed TadA-E27R/N46L. A C-to-G base editor (CGBE) engineered with TadA-CDd and OsUNG performed highly efficient C-to-G editing in rice compared with that of TadA-N46P. In addition, a dual base editor constructed with a single protein, TadDE, enabled simultaneous, highly efficient C-to-T and A-to-G editing in rice. Collectively, our results demonstrate that TadA8e derivatives improve both CBEs and dual base editors in rice, providing a powerful way to induce diverse nucleotide substitutions for plant genome editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Oryza , Oryza/genética , Edição de Genes/métodos , Proteínas de Plantas/genética
8.
Front Neurol ; 15: 1343303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515447

RESUMO

Background: Parkinson's disease (PD), characterized by the loss of dopaminergic neurons, is a progressive neurodegenerative disorder. Recent research has revealed a significant connection between gut microbiota and PD. To gain insight into research interests, disciplinary contexts, and potential future directions, a comprehensive bibliometric analysis was conducted on the brain-gut axis and PD literature published between 2014 and 2023. Methods: Relevant literature records were gathered from the Web of Science Core Collection on August 11, 2023. The data were then analyzed by Biblioshiny R packages and VOSviewer (version 1.6.19). Results: The dataset revealed an upward trend in annual scientific publications on the brain-gut axis and PD, with an annual growth rate of 50.24%. China, the United States, and Italy were the top three most productive countries/regions. The journal "International Journal Of Molecular Sciences" published the most articles, while "Movement Disorders" received the highest number of citations. Professor Keshavarzian A emerged as the most prolific author, while Professor Scheperjans F held the highest h-index. Keyword analysis highlighted "alpha-synuclein" as the most frequent term, with "mouse model," "inflammation," and "risk" as emerging research topics. Additionally, "central nervous system" and "intestinal bacterial overgrowth" attracted increasing attention. Conclusion: This study examined current trends and hotspots in the bibliometric landscape of the brain-gut axis and PD research. Future research directions should explore the functional and metabolic activities of gut microbiota. Additionally, transitioning from observational to interventional study designs offers the potential for personalized interventions and disease prediction. These findings can guide researchers in navigating the latest developments and shaping the future directions of this field.

9.
Virology ; 594: 110061, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38518441

RESUMO

The occurrence of geminiviruses causes significant economic losses in many economically important crops. In this study, a novel geminivirus isolated from tobacco in Sichuan province of China, named tomato leaf curl Chuxiong virus (TLCCxV), was characterized by small RNA-based deep sequencing. The full-length of TLCCxV genome was determined to be 2744 nucleotides (nt) encoding six open reading frames. Phylogenetic and genome-wide pairwise identity analysis revealed that TLCCxV shared less than 91% identities with reported geminiviruses. A TLCCxV infectious clone was constructed and successfully infected Nicotiana benthamiana, N. tabacum, N. glutinosa, Solanum lycopersicum and Petunia hybrida plants. Furthermore, expression of the V2, C1 and C4 proteins through a potato virus X vector caused severe chlorosis or necrosis symptom in N. benthamiana. Taken together, we identified a new geminivirus in tobacco plants, and found that V2, C1 and C4 contribute to symptom development.


Assuntos
Begomovirus , Geminiviridae , Geminiviridae/genética , Nicotiana , Filogenia , Virulência , Doenças das Plantas , Begomovirus/genética , China
11.
Plant Dis ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319620

RESUMO

Hibiscus latent Singapore virus (HLSV) and Hibiscus latent Fort Pierce virus (HLFPV) both belong to the genus Tobamovirus in the family Virgaviridae. The genomes of both HLSV and HLFPV consist of a linear positive sense single-stranded RNA of about 6.3 kb. HLSV is the causal agent of hibiscus leaf crinkle disease. Infections of HLSV in hibiscus (Hibiscus rosa-sinensis) have so far only been reported in Singapore, Japan and Malaysia (Srinivasan et al., 2002; Yoshida et al., 2018; Yusop et al., 2021). In 2017, leaf curling and chlorosis symptoms of lantana (Lantana camara) plants were found in Chenshan Botanical Garden, Shanghai, China. To detect potential virus(es) in these lantana samples, leaves from one lantana plant were collected and total RNA was extracted with RNAiso Plus (TaKaRa). A cDNA library was prepared by TruSeq RNA Sample Prep Kit (Illumina) after removing ribosomal RNA by Ribo-ZeroTM rRNA Removal Kit (Epicentre). The paired-end sequencing was then performed on an Illumina NovaSeq 6000. A total of 61,085,018 high quality reads were obtained and de novo assembly by StringTie revealed 124,516 contigs (greater than 50 bp, N50=719 bp) with an average length of 537 bp. BLASTx analyses in the National Center for Biotechnology Information (NCBI) database showed that 1 long contig of 6,305 bp, assembled of 1794 clean reads, shared significant nucleotide similarities with the genomic sequence of HLSV, and 1 contig of 6,271 bp, assembled of 3174 clean reads, shared significant similarities with the genomic sequence of HLFPV, yielding an average coverage of the whole genome at 42.65 and 75.83 per million reads, respectively. To obtain the complete genome of the viral RNA in this lantana sample, eleven overlapping regions covering the entire HLSV viral genome, and nine overlapping regions covering the entire HLFPV viral genome were amplified by reverse transcription-PCR (RT-PCR) and sequenced. In addition, the exact 5' and 3' ends of the genomic RNA of each virus were determined by rapid amplification of the cDNA ends (RACE) (Wang et al. 2020). The complete genome of the identified HLSV, deposited in GenBank: MZ020960, is 6,486 nt in length and shows 98.4% nucleotide sequence identity with HLSV Singapore isolate (GenBank: AF395898). Similar to other HLSV isolates, this virus isolate possesses an internal poly(A) tract of 87 nucleotides, which is crucial to virus replication (Niu et al., 2015). The complete genome of the Lantana HLFPV isolate is 6,463 nt (GenBank MZ020961) including a 73 nt internal poly(A) tract, and has 98.4% nt identity to HLFPV-Japan (AB917427). In two other lantana plants from the same site, the presence of HLSV and HLFPV was confirmed by RT-PCR using the primer pairs (5'-GCATCTGCATAACACGGTTG-3'/5'-ACGTTGTAGTAGACGTTGTTGTAG-3' and 5'-GGACCTTGCTAATCCGCTAAAGTTG-3'/5'-GGTCCATGTCCATCCAGATGCAATC-3'). In addition to the HLSV and HLFPV genomes, BLASTx analysis of three contigs of 3,006 bp, 2,845 bp and 2,200 bp, assembled of 1328, 352 and 2280 clean reads respectively, showed high identity to RNAs 1 (MG182148), 2 (DQ412731) and 3 (KY794710) of cucumber mosaic virus. To the best of our knowledge, this is the first report of L. camara as a new natural host of HLSV and HLFPV, and first identification of a mixed infection of HLSV and HLFPV.

12.
Arch Virol ; 169(3): 46, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366035

RESUMO

Ixeris denticulata is a perennial herbal plant with important medical and economic value. In this study, a novel rhabdovirus from I. denticulata with leaf curling and mottle symptoms was identified through next-generation sequencing and molecular cloning approaches. Based on the host species and properties of this virus, it was tentatively named "Ixeris denticulata-associated rhabdovirus" (IdaRV). IdaRV has a negative-sense RNA genome that is 12,705 nucleotides in length and has five open reading frames (ORFs) in the order 3'-nucleoprotein -phosphoprotein -movement protein -matrix protein -large RNA-dependent RNA polymerase-5'. Pairwise sequence comparisons showed that IdaRV had 42.2-53.0% sequence identity to members of the genera Cytorhabdovirus, Varicosavirus, Betanucleorhabdovirus, Gammanucleorhabdovirus, Dichorhavirus, and Alphanucleorhabdovirus in the subfamily Betarhabdovirinae. BLASTp searches indicated that putative products of ORF1, ORF2, ORF3, ORF4, and ORF5 of IdaRV are most closely related to those of rudbeckia virus 1 (RudV1, GenBank accession number ON185810), with 32.1%, 21.3%, 52.4%, 37.6%, and 57.1% amino acid sequence identity, respectively, at the protein level. Phylogenetic analysis showed that IdaRV forms a smaller branch with RudV1, which belongs to the genus Cytorhabdovirus. These results establish IdaRV as a novel rhabdovirus in the genus Cytorhabdovirus of the family Rhabdoviridae.


Assuntos
Asteraceae , Rhabdoviridae , Genoma Viral , Filogenia , Genômica , Fases de Leitura Aberta , RNA Viral/genética , RNA Viral/metabolismo
13.
Viruses ; 16(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38400010

RESUMO

Geminiviruses are a group of single-stranded DNA viruses that have developed multiple strategies to overcome host defenses and establish viral infections. Sucrose nonfermenting-1-related kinase 1 (SnRK1) is a key regulator of energy balance in plants and plays an important role in plant development and immune defenses. As a heterotrimeric complex, SnRK1 is composed of a catalytic subunit α (SnRK1 α) and two regulatory subunits, ß and γ. Previous studies on SnRK1 in plant defenses against microbial pathogens have mainly focused on SnRK1 α. In this study, we validated the interaction between the C4 protein encoded by tobacco leaf curl Yunnan virus (TbLCYnV) and the regulatory subunit ß of Nicotiana benthamiana SnRK1, i.e., NbSnRK1 ß2, and identified that the Asp22 of C4 is critical for TbLCYnV C4-NbSnRK1 ß2 interactions. NbSnRK1 ß2 silencing in N. benthamiana enhances susceptibility to TbLCYnV infection. Plants infected with viral mutant TbLCYnV (C4D22A), which contains the mutant version C4 (D22A) that is incapable of interacting with NbSnRK1 ß2, display milder symptoms and lower viral accumulation. Furthermore, we discovered that C4 promotes NbSnRK1 ß2 degradation via the autophagy pathway. We herein propose a model by which the geminivirus C4 protein causes NbSnRK1 ß2 degradation via the TbLCYnV C4-NbSnRK1 ß2 interaction to antagonize host antiviral defenses and facilitates viral infection and symptom development in N. benthamiana.


Assuntos
Begomovirus , Geminiviridae , Viroses , Begomovirus/genética , China , Geminiviridae/genética , Geminiviridae/metabolismo , Doenças das Plantas , Proteínas Virais/genética
15.
Sci China Life Sci ; 67(1): 161-174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837530

RESUMO

N6-methyladenosine (m6A) is the most abundant eukaryotic mRNA modification and is involved in various biological processes. Increasing evidence has implicated that m6A modification is an important anti-viral defense mechanism in mammals and plants, but it is largely unknown how m6A regulates viral infection in plants. Here we report the dynamic changes and functional anatomy of m6A in Nicotiana benthamiana and Solanum lycopersicum during Pepino mosaic virus (PepMV) infection. m6A modification in the PepMV RNA genome is conserved in these two species. Overexpression of the m6A writers, mRNA adenosine methylase A (MTA), and HAKAI inhibit the PepMV RNA accumulation accompanied by increased viral m6A modifications, whereas deficiency of these writers decreases the viral RNA m6A levels but enhances virus infection. Further study reveals that the cytoplasmic YTH-domain family protein NbECT2A/2B/2C as m6A readers are involved in anti-viral immunity. Protein-protein interactions indicate that NbECT2A/2B/2C interact with nonsense-mediated mRNA decay (NMD)-related proteins, including NbUPF3 and NbSMG7, but not with NbUPF1. m6A modification-mediated restriction to PepMV infection is dependent on NMD-related factors. These findings provide new insights into the functionality of m6A anti-viral activity and reveal a distinct immune response that NMD factors recognize the m6A readers-viral m6A RNA complex for viral RNA degradation to limit virus infection in plants.


Assuntos
Vírus de Plantas , Viroses , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Vírus de Plantas/genética , RNA , RNA Mensageiro/genética
16.
J Integr Plant Biol ; 66(3): 579-622, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37924266

RESUMO

Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.


Assuntos
Patologia Vegetal , Vírus de Plantas , Doenças das Plantas/genética , Plantas/genética , Plantas/metabolismo , China
17.
Trends Plant Sci ; 29(1): 16-19, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37953079

RESUMO

Plants use RNA interference for basal antiviral immunity, but emerging evidence suggests that additional RNA-targeting defense mechanisms also defend against invading viruses. Recent advancements in the understanding of RNA decay, RNA quality control, and N6-methyladenosine (m6A) RNA modifications have unveiled new insights into the molecular arms race between plants and viruses.


Assuntos
Doenças das Plantas , Vírus de Plantas , Interferência de RNA , RNA , Vírus de Plantas/genética , Plantas
19.
Plant Dis ; 108(8): 2321-2329, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38127636

RESUMO

The damage caused by the white-back planthopper (WBPH, Sogatella furcifera) and brown planthopper (BPH, Nilaparvata lugens), as well as southern rice black-streaked dwarf virus (SRBSDV), considerably decreases the grain yield of rice. Identification of rice germplasms with sufficient resistance to planthoppers and SRBSDV is essential to the breeding and deployment of resistant varieties and, hence, the control of the pests and disease. In this study, 318 rice accessions were evaluated for their reactions to the infestation of both BPH and WBPH at the seedling stage using the standard seed-box screening test method; insect quantification was further conducted at the end of the tillering and grain-filling stages in field trials. Accessions HN12-239 and HN12-328 were resistant to both BPH and WBPH at all tested stages. Field trials were conducted to identify resistance in the collection to SRBSDV based on the virus infection rate under artificial inoculation. Rathu Heenati (RHT) and HN12-239 were moderately resistant to SRBSDV. In addition, we found that WBPH did not penetrate stems with stylets but did do more probing bouts and xylem sap ingestion when feeding on HN12-239 than the susceptible control rice Taichung Native 1. The resistance of rice accessions HN12-239, HN12-328, and RHT to BPH, WBPH, and/or SRBSDV should be valuable to the development of resistant rice varieties.


Assuntos
Hemípteros , Oryza , Doenças das Plantas , Hemípteros/virologia , Oryza/virologia , Animais , Doenças das Plantas/virologia , Resistência à Doença , Reoviridae/fisiologia , Vírus de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA