Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722208

RESUMO

In the electrocatalytic CO2 reduction reaction (CO2RR), metal catalysts with an oxidation state generally demonstrate more favorable catalytic activity and selectivity than their corresponding metallic counterparts. However, the persistence of oxidative metal sites under reductive potentials is challenging since the transition to metallic states inevitably leads to catalytic degradation. Herein, a thorough review of research on oxidation-state stabilization in the CO2RR is presented, starting from fundamental concepts and highlighting the importance of oxidation state stabilization while revealing the relevance of dynamic oxidation states in product distribution. Subsequently, the functional mechanisms of various oxidation-state protection strategies are explained in detail, and in situ detection techniques are discussed. Finally, the prevailing and prospective challenges associated with oxidation-state protection research are discussed, identifying innovative opportunities for mechanistic insights, technology upgrades, and industrial platforms to enable the commercialization of the CO2RR.

3.
Nature ; 626(7997): 86-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297172

RESUMO

Electrolysis that reduces carbon dioxide (CO2) to useful chemicals can, in principle, contribute to a more sustainable and carbon-neutral future1-6. However, it remains challenging to develop this into a robust process because efficient conversion typically requires alkaline conditions in which CO2 precipitates as carbonate, and this limits carbon utilization and the stability of the system7-12. Strategies such as physical washing, pulsed operation and the use of dipolar membranes can partially alleviate these problems but do not fully resolve them11,13-15. CO2 electrolysis in acid electrolyte, where carbonate does not form, has therefore been explored as an ultimately more workable solution16-18. Herein we develop a proton-exchange membrane system that reduces CO2 to formic acid at a catalyst that is derived from waste lead-acid batteries and in which a lattice carbon activation mechanism contributes. When coupling CO2 reduction with hydrogen oxidation, formic acid is produced with over 93% Faradaic efficiency. The system is compatible with start-up/shut-down processes, achieves nearly 91% single-pass conversion efficiency for CO2 at a current density of 600 mA cm-2 and cell voltage of 2.2 V and is shown to operate continuously for more than 5,200 h. We expect that this exceptional performance, enabled by the use of a robust and efficient catalyst, stable three-phase interface and durable membrane, will help advance the development of carbon-neutral technologies.

4.
Adv Mater ; 35(52): e2303052, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37589167

RESUMO

Electrochemical carbon dioxide reduction reaction (CO2 RR) driven by renewable energy shows great promise in mitigating and potentially reversing the devastating effects of anthropogenic climate change and environmental degradation. The simultaneous synthesis of energy-dense chemicals can meet global energy demand while decoupling emissions from economic growth. However, the development of CO2 RR technology faces challenges in catalyst discovery and device optimization that hinder their industrial implementation. In this contribution, a comprehensive overview of the current state of CO2 RR research is provided, starting with the background and motivation for this technology, followed by the fundamentals and evaluated metrics. Then the underlying design principles of electrocatalysts are discussed, emphasizing their structure-performance correlations and advanced electrochemical assembly cells that can increase CO2 RR selectivity and throughput. Finally, the review looks to the future and identifies opportunities for innovation in mechanism discovery, material screening strategies, and device assemblies to move toward a carbon-neutral society.

5.
Angew Chem Int Ed Engl ; 61(29): e202202859, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35536257

RESUMO

Electrocatalytic carbon monoxide reduction has been previously reported to yield a range of carbonaceous products including alcohols, hydrocarbons and carboxylic acids. However, esters, an important family of organic compounds, have not been formed. Herein, we report the electrosynthesis of C3 to C6 acetate esters (H3 C-(C=O)-O-R) from carbon monoxide using copper catalysts in a membrane electrode assembly cell. Ethyl acetate and propyl acetate could be produced with an unprecedented total Faradaic efficiency (FE) of ∼22 % and with a current density of up to -55 mA cm-2 , alongside minor quantities of methyl acetate and butyl acetate. The esters are produced via the addition reaction of ethenone (H2 C=C=O) and alcohols produced during CO reduction. We show that the near water-free reaction conditions and the high local pH play key roles in the formation of the esters.


Assuntos
Monóxido de Carbono , Ésteres , Acetatos , Álcoois/química , Eletrodos , Ésteres/química
6.
Angew Chem Int Ed Engl ; 61(21): e202200552, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35257453

RESUMO

Developing robust electrocatalysts and advanced devices is important for electrochemical carbon dioxide (CO2 ) reduction toward the generation of valuable chemicals. We present herein a carbon-confined indium oxide electrocatalyst for stable and efficient CO2 reduction. The reductive corrosion of oxidative indium to the metallic state during electrolysis could be prevented by carbon protection, and the applied carbon layer also optimizes the reaction intermediate adsorption, which enables both high selectivity and activity for CO2 reduction. In a liquid-phase flow cell, the formate selectivity exceeds 90 % in a wide potential window from -0.8 V to -1.3 V vs. RHE. The continuous production of ca. 0.12 M pure formic acid solution is further demonstrated at a current density of 30 mA cm-2 in a solid-state electrolyte mediated reactor. This work provides significant concepts in the parallel development of electrocatalysts and devices for carbon-neutral technologies.

7.
Angew Chem Int Ed Engl ; 60(35): 19107-19112, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34164898

RESUMO

We report an amino-functionalized indium-organic framework for efficient CO2 reduction to formate. The immobilized amino groups strengthen the absorption and activation of CO2 and stabilize the active intermediates, which endow an enhanced catalytic conversion to formate despite the inevitable reduction and reconstruction of the functionalized indium-based catalyst during electrocatalysis. The reconstructed amino-functionalized indium-based catalyst demonstrates a high Faradaic efficiency of 94.4 % and a partial current density of 108 mA cm-2 at -1.1 V vs. RHE in a liquid-phase flow cell, and also delivers an enhanced current density of ca. 800 mA cm-2 at 3.4 V for the formate production in a gas-phase flow cell configuration. This work not only provides a molecular functionalization and assembling concept of hybrid electrocatalysts but also offers valuable understandings in electrocatalyst evolution and reactor optimization for CO2 electrocatalysis and beyond.

8.
Adv Mater ; 32(8): e1906806, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31950562

RESUMO

Oxygen evolution reaction (OER) catalysts that function efficiently in pH-neutral electrolyte are of interest for biohybrid fuel and chemical production. The low concentration of reactant in neutral electrolyte mandates that OER catalysts provide both the water adsorption and dissociation steps. Here it is shown, using density functional theory simulations, that the addition of hydrated metal cations into a Ni-Fe framework contributes water adsorption functionality proximate to the active sites. Hydration-effect-promoting (HEP) metal cations such as Mg2+ and hydration-effect-limiting Ba2+ into Ni-Fe frameworks using a room-temperature sol-gel process are incorporated. The Ni-Fe-Mg catalysts exhibit an overpotential of 310 mV at 10 mA cm-2 in pH-neutral electrolytes and thus outperform iridium oxide (IrO2 ) electrocatalyst by a margin of 40 mV. The catalysts are stable over 900 h of continuous operation. Experimental studies and computational simulations reveal that HEP catalysts favor the molecular adsorption of water and its dissociation in pH-neutral electrolyte, indicating a strategy to enhance OER catalytic activity.

10.
ACS Appl Mater Interfaces ; 11(22): 20521-20527, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31081314

RESUMO

Photocatalytic stability and efficient charge separation are key factors to photocatalytic performance for visible-light-driven H2 evolution from water. Here, we report a whole novel self-rectified photocatalyst constructed from the Shockley partial dislocation-induced multiple faults, using a ternary chalcogenide, that is, Cd0.8Zn0.2S nanorod as a model material. The introduction of multiple faults, which are typical planar defects, constructs a nanorectifier that aligns along the axial direction and constitutes a relatively ordered superstructure. The band bending and Fermi-level flattening at the nanorectifier would cause the photogenerated charge carriers to be transferred reversely at the axial direction on account of the charge type and then realize the separation of the charge carriers.

11.
Inorg Chem ; 57(21): 13067-13070, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351071

RESUMO

An inorganic photocatalyst with a novel 3D star topology (ST) framework was obtained via multiple cross-linking of biocoordination polymers in one-step solvothermal conditions. It possessesd a large surface area (149.36 m2·g-1), among the highest value of the current reports, and represented the quantum size effect because of its 3D ST structure. The amino acid l-cysteine was introduced into the synthesis system to lead generation of the biometic coordination polymer through the amino acid dehydrate condensation and multiple cross-linking.

12.
Nat Commun ; 9(1): 3828, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237471

RESUMO

Copper-based materials are promising electrocatalysts for CO2 reduction. Prior studies show that the mixture of copper (I) and copper (0) at the catalyst surface enhances multi-carbon products from CO2 reduction; however, the stable presence of copper (I) remains the subject of debate. Here we report a copper on copper (I) composite that stabilizes copper (I) during CO2 reduction through the use of copper nitride as an underlying copper (I) species. We synthesize a copper-on-nitride catalyst that exhibits a Faradaic efficiency of 64 ± 2% for C2+ products. We achieve a 40-fold enhancement in the ratio of C2+ to the competing CH4 compared to the case of pure copper. We further show that the copper-on-nitride catalyst performs stable CO2 reduction over 30 h. Mechanistic studies suggest that the use of copper nitride contributes to reducing the CO dimerization energy barrier-a rate-limiting step in CO2 reduction to multi-carbon products.

13.
Nat Chem ; 10(9): 974-980, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013194

RESUMO

The electrochemical reduction of CO2 to multi-carbon products has attracted much attention because it provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the efficiency of CO2 conversion to C2 products remains below that necessary for its implementation at scale. Modifying the local electronic structure of copper with positive valence sites has been predicted to boost conversion to C2 products. Here, we use boron to tune the ratio of Cuδ+ to Cu0 active sites and improve both stability and C2-product generation. Simulations show that the ability to tune the average oxidation state of copper enables control over CO adsorption and dimerization, and makes it possible to implement a preference for the electrosynthesis of C2 products. We report experimentally a C2 Faradaic efficiency of 79 ± 2% on boron-doped copper catalysts and further show that boron doping leads to catalysts that are stable for in excess of ~40 hours while electrochemically reducing CO2 to multi-carbon hydrocarbons.

14.
Angew Chem Int Ed Engl ; 57(21): 6073-6076, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29473991

RESUMO

N2 fixation by the electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions is regarded as a potential approach to achieve NH3 production, which still heavily relies on the Haber-Bosch process at the cost of huge energy and massive production of CO2 . A noble-metal-free Bi4 V2 O11 /CeO2 hybrid with an amorphous phase (BVC-A) is used as the cathode for electrocatalytic NRR. The amorphous Bi4 V2 O11 contains significant defects, which play a role as active sites. The CeO2 not only serves as a trigger to induce the amorphous structure, but also establishes band alignment with Bi4 V2 O11 for rapid interfacial charge transfer. Remarkably, BVC-A shows outstanding electrocatalytic NRR performance with high average yield (NH3 : 23.21 µg h-1 mg-1cat. , Faradaic efficiency: 10.16 %) under ambient conditions, which is superior to the Bi4 V2 O11 /CeO2 hybrid with crystalline phase (BVC-C) counterpart.

15.
Inorg Chem ; 55(10): 4782-9, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27135691

RESUMO

The creation of a phase junction structure in photocatalysts is a wise approach to promote photocatalytic performance, as phase junctions possess the potential to inhibit the recombination of photoinduced charge carriers. Here, Bi4V2O11 nanofibers with an α-ß phase junction are fabricated via electrospinning with subsequent calcination. Electrospinning offers the opportunity to keep α-Bi4V2O11 from transforming into ß-Bi4V2O11 completely due to an electrospinning retardation effect, leading to the formation of an α-ß Bi4V2O11 phase junction. Furthermore, the α-ß Bi4V2O11 phase junction realizes a well-established type-II band alignment. Photoelectrochemical measurements and photoluminescence spectroscopic investigations demonstrate that the phase junction structure has a significant impact on the separation and transfer of photogenerated electrons and holes. Thus, the α-ß phase junction on Bi4V2O11 holds the key to achieving promoted efficiency in the photocatalysis process.

16.
ACS Appl Mater Interfaces ; 7(46): 25716-24, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26524604

RESUMO

The porous single-crystal-like micro/nanomaterials exhibited splendid intrinsic performance in photocatalysts, dye-sensitized solar cells, gas sensors, lithium cells, and many other application fields. Here, a novel mesoporous single-crystal-like Bi2WO6 tetragonal architecture was first achieved in the mixed molten salt system. Its crystal construction mechanism originated from the oriented attachment of nanosheet units accompanied by Ostwald ripening process. Additionally, the synergistic effect of mixed alkali metal nitrates and electrostatic attraction caused by internal electric field in crystal played a pivotal role in oriented attachment process of nanosheet units. The obtained sample displayed superior photocatalytic activity of both organic dye degradation and O2 evolution from water under visible light. We gained an insight into this unique architecture's impact on the physical properties, light absorption, photoelectricity, and luminescent decay, etc., that significantly influenced photocatalytic activity.

17.
Chem Commun (Camb) ; 51(90): 16244-6, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26399299

RESUMO

Mesoporous g-C3N4 has been obtained by a facile sucrose-mediated approach via thermal condensation of sucrose and melamine for the first time. The mesoporous g-C3N4 presents a much higher BET surface area and displays highly enhanced photocatalytic H2 evolution performance.

18.
Chem Commun (Camb) ; 51(31): 6824-7, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25786546

RESUMO

Carbonized polydopamine-graphitic carbon nitride (C-PDA-g-C3N4) composites have been synthesised via in situ polymerization of dopamine (DA) on the surface of melamine followed by carbonization and condensation for the first time. The obtained C-PDA-g-C3N4 composites display enhanced crystallinity and superior photocatalytic performance.

19.
Chem Commun (Camb) ; 51(2): 425-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25408286

RESUMO

A facile sulfur-bubble template-mediated synthesis of uniform porous g-C3N4 has been developed for the first time. The obtained sulfur-mediated g-C3N4 presents a uniform porous structure with higher BET surface area and displays superior photocatalytic performance compared with pure g-C3N4.

20.
Phys Chem Chem Phys ; 17(3): 1870-6, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25474654

RESUMO

Reducing the oxidative capacity of holes (h(+)) in the valence band (VB) of ZnS is one of the most effective ways to prevent the photocatalyst from photocorrosion. In this work, ZnS doped only with nitrogen was prepared for the first time by nitriding ZnS powder in an NH3 atmosphere. We demonstrate theoretically and experimentally that the valence band maximum (VBM) rises obviously by N-doping in ZnS, suggesting the reduction of the oxidative capacity of holes (h(+)) in the valence band. The theoretically predicted band structures were further verified by valence band X-ray photoelectron spectroscopy (VB XPS) and Mott-Schottky measurements. The as-prepared N-doped ZnS exhibited an outstanding stable capability for photocatalytic hydrogen evolution from water under simulated sunlight irradiation for 12 h. However, pristine ZnS showed no capability and was seriously photocorroded under the same conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...