Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300850

RESUMO

Common wheat (Triticum aestivum L.) production in China is challenged by stripe (yellow) rust, powdery mildew, and Fusarium head blight (FHB). Airborne inoculum of these pathogens is the causative driver of disease epidemics. Thus, monitoring of airborne inoculum on such fungal diseases is expected to provide some reliable estimations of disease development, especially by targeting multiple diseases simultaneously. This paper reports the development of a new practical qPCR-based method coupled with spore trapping to quantify simultaneously airborne inoculum of Puccinia striiformis f. sp. tritici, Blumeria graminis f. sp. tritici, and Fusarium graminearum & Fusarium asiaticum and discusses its potential use in disease-risk warnings. The technique can detect DNA of Pst, Bgt, and Fg at quantities as low as 0.2 pg (i.e. representing 0.65 urediniospores, 1.18 conidia, and 10 macroconidia, respectively), and neither Triticum aestivum DNA nor DNA of other common wheat pathogens were amplified. A linear relationship was produced between the number of spores on tape determined by qPCR and conventional microscopy, with a small variation (R2 value 0.97 to 0.99 depending on pathogen species). The daily concentrations of spores of the three pathogens were monitored using a Burkard 7-day recording spore trap, and the airborne spores were collected from a field near Langfang City, Hebei Province, China. The patterns of spore concentration dynamics in the air determined by triplex qPCR were close to those counted by conventional microscopy in a duplicated sub-sample. The developed assay can be an alternative to conventional microscopy to process large samples. This will improve monitoring power by providing timely risk warning information to growers regarding the timing of fungicide applications.

2.
Exp Ther Med ; 28(5): 417, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39301261

RESUMO

Loganin, a major iridoid glycoside derived from Cornus officinalis, exerts strong anti-inflammatory property. The present study aimed to investigate the underlying mechanism of loganin to reduce estrogen deficiency-induced bone loss through a combination of network pharmacology, molecular docking and in vivo validation. First, the drug targets and structural interactions of loganin with osteoclasts on postmenopausal osteoporosis (PMOP) were predicted through network pharmacology and molecular docking. An ovariectomized (OVX) mouse model was established to experimentally validate loganin's anti-PMOP efficacy, supported by its protective effect on bone destruction and excessive inflammatory cytokines. The top 10 core targets of loganin generated by a protein-protein interaction network were the following: GAPDH, VEGFA, EGFR, ESR1, HRAS, SRC, FGF2, HSP90AA1, PTGS2 and IL-2. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that loganin suppressed PMOP via mediating inflammation, bone formation, IL-17 signaling pathway and NF-κB signaling pathway. Molecular docking results indicated strong binding between loganin and core targets, in which the binding energy was approximately -5.2 and -7.4 kcal/mol. In vivo mouse model revealed that loganin inhibited the expression of pro-osteoclastic markers, such as tartrate-resistant acid phosphatase, C-terminal telopeptide, TNF-α and IL-6, enhanced the secretion of bone formation markers, such as procollagen type I intact n-terminal pro-peptide and IL-10, and improved bone micro-structure (bone volume/tissue volume and trabecular number), representative of the anti-resorptive effect mediated by loganin. In summary, the present study combined network pharmacology and molecular docking to predict the underlying mechanism of loganin against PMOP, validated by the in vivo mouse model showing that loganin attenuated OVX-induced bone loss by inhibiting inflammation.

3.
Front Nutr ; 11: 1421531, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296501

RESUMO

Background: Peripheral arteriosclerosis is caused by any atherosclerosis outside the heart and brain. However, the underlying biological mechanisms are not fully understood. This study aims to explore the causal relationship between blood metabolites and peripheral arteriosclerosis. Methods: A Mendelian randomization (MR) analysis was implemented to estimate the causality of blood metabolites on peripheral arteriosclerosis. A genome-wide association study (GWAS) of 1,400 metabolites was used as the exposure, whereas two different GWAS datasets of peripheral arteriosclerosis were the outcomes. Inverse-variance weighted (IVW) was the main analysis of causal analysis. MR-Egger, the simple mode, weighted median and weighted mode were used to increase the stability and robustness of the results. Cochran Q test, MR-Egger intercept test, the funnel plot, and MR-Pleiotropy RESidual Sum and Outlier were used for sensitivity analyses. Furthermore, metabolic pathway enrichment analysis was performed using MetaboAnalyst5.0. Results: In this MR study, eight blood metabolites have a strong causal relationship with peripheral arteriosclerosis, including 1-myristoyl-2-arachidonoyl-GPC (14:0/20:4), 1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6), 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE, 1-palmitoyl-2-dihomo-linolenoyl-GPC, Gamma-glutamylleucine, Deoxycholic acid glucuronide and two named X- (X-24546, X-26111). In addition, five important metabolic pathways in peripheral arteriosclerosis were identified through metabolic pathway analysis. Conclusion: This study provides evidence for the causal relationship between blood metabolites and peripheral arteriosclerosis, and these eight blood metabolites provide new perspectives for screening and prevention of peripheral arteriosclerosis in the future.

4.
Plant Dis ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300849

RESUMO

Wheat stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is an important airborne disease worldwide. Pst inoculum strength in southern Henan in winter or early spring is important for spring epidemic in the main autumn-sown wheat-growing regions of China. However, there is limited knowledge about the source and time of initial infection on winter wheat in southern Henan. The first occurrence of wheat stripe rust in southern Henan was recorded annually from 2011-2022, from which we used the backward trajectory approach to infer the likely source of Pst inoculum responsible for the initial disease occurrence. The results suggested that the Pst inoculum responsible for initial rust established in the winter in southern Henan originated from the Gansu Pst oversummering area in China, whereas it originated from the adjacent winter Pst sporulation regions in southern Shaanxi and northwestern Hubei if Pst symptoms were first observed in early spring in southern Henan. Another possible Pst source is southern Hubei where Pst can also sporulate in the winter. Thus, early Pst development in winter in the main wheat production in China (Henan) is likely to be caused by Pst inoculum spread from the oversummering inocula or Pst epidemics in autumn seedlings in Gansu.

5.
Am J Chin Med ; : 1-28, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39343989

RESUMO

Due to their complex pathological mechanisms, neurodegenerative diseases have brought great challenges to drug development and clinical treatment. Studies have shown that many traditional Chinese medicines have neuroprotective pharmacological activities such as anti-inflammatory and anti-oxidation properties and have certain effects on improving the symptoms of neurodegenerative diseases and delaying disease progression. Flavonoids are the main active components of many traditional Chinese medicines for the treatment of neurodegenerative diseases. These compounds have a wide range of biological activities, including anti-inflammatory, anti-oxidative stress, regulation of autophagy balance, inhibition of apoptosis, and promotion of neuronal regeneration. This paper focuses on the neuroprotective effects of six common flavonoids: quercetin, rutin, luteolin, kaempferol, baicalein, and puerarin. It then systematically reviews their characteristics, mechanisms, and key signaling pathways, summarizes the common characteristics and laws of their neuroprotective effects, and discusses the significance of strengthening the research on the neuroprotective effects of these compounds, aiming to provide reference for more research and drug development of these substances as neuroprotective drugs.

6.
bioRxiv ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39345475

RESUMO

SQUAMOSA Promoter-Binding Protein-Like (SPL) transcription factors play vital roles in plant development and stress responses. In this study, we report a comprehensive DNA Affinity Purification sequencing (DAP-seq) analysis for 14 of the 16 SPL transcription factors in Arabidopsis thaliana , providing valuable insights into their DNA-binding specificities. We performed Gene Ontology (GO) analysis of the target genes to reveal their convergent and diverse biological functions among SPL family proteins. Comparative analysis between the paralogs AtSPL9 and AtSPL15 revealed differences in their binding motifs, suggesting divergent regulatory functions. Additionally, we expanded our investigation to homologs of AtSPL9/15 in Zea mays (ZmSBP8/30) and Triticum aestivum (TaSPL7/13), identifying conserved and unique DNA-binding patterns across species. These findings provide key resources for understanding the molecular mechanisms of SPL transcription factors in regulating plant development and evolution across different species.

7.
J Colloid Interface Sci ; 678(Pt B): 854-865, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39270386

RESUMO

The self-assembling morphologies of proteins, nucleic acids, and peptides are well correlated with their functioning in biological systems. In spite of extensive studies for the morphologies regulating, the directional control of the assembly morphology structure for the peptides still remains challenging. Here, the directional structure control of a bola-like peptide Ac-KIIF-CONH2 (KIIF) was realized by introducing different amount of acetonitrile to the system. The morphologies were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM), and the secondary structure was evaluated by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that the introducing of different amount of acetonitrile has significantly tuned the hydrophobic interactions amongst the side chains, thus affecting the self-assembling morphologies. As acetonitrile content increased, the assemblies changed from nanotubes to helical/twisted ribbons and then to thin fibrils, with a steady decrease in the width. In contrast, the assemblies changed from thin fibrils to helical/twisted ribbons, and then to matured nanotubes, exhibiting a steady increase in the width with peptide concentration increasing. Complementary molecular dynamics (MD) simulations demonstrated the important role of acetonitrile in controlling the hydrophobic interactions, providing microscopic evidence for the structure transition process. We believe such observations provide important insights into the design and fabrication of functional materials with controlled shape and size.

8.
Research (Wash D C) ; 7: 0452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171118

RESUMO

Real-time thermal sensing through flexible temperature sensors in extreme environments is critically essential for precisely monitoring chemical reactions, propellant combustions, and metallurgy processes. However, despite their low response speed, most existing thermal sensors and related sensing materials will degrade or even lose their sensing performances at either high or low temperatures. Achieving a microsecond response time over an ultrawide temperature range remains challenging. Here, we design a flexible temperature sensor that employs ultrathin and consecutive Mo1-x W x S2 alloy films constructed via inkjet printing and a thermal annealing strategy. The sensing elements exhibit a broad work range (20 to 823 K on polyimide and 1,073 K on flexible mica) and a record-low response time (about 30 µs). These properties enable the sensors to detect instantaneous temperature variations induced by contact with liquid nitrogen, water droplets, and flames. Furthermore, a thermal sensing array offers the spatial mapping of arbitrary shapes, heat conduction, and cold traces even under bending deformation. This approach paves the way for designing unique sensitive materials and flexible sensors for transient sensing under harsh conditions.

9.
Cell Death Discov ; 10(1): 381, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187478

RESUMO

Telomerase reverse transcriptase (Tert) has been found to have a protective effect on telomeric DNA, but whether it could improve the repair of reactive oxygen species (ROS)-induced DNA damage and promote myocardial regenerative repair after myocardial infarction (MI) by protecting telomeric DNA is unclear. The immunofluorescence staining with TEL-CY3 and the TeloTAGGG Telomerase PCR ELISA kit were used to show the telomere length and telomerase activity. The heart-specific Tert-deletion homozygotes were generated by using commercial Cre tool mice and flox heterozygous mice for mating. We measured the telomere length and telomerase activity of mouse cardiomyocytes (CMs) at different days of age, and the results showed that they were negatively correlated with age. Overexpressed Tert could enhance telomerase activity and lengthen telomeres, thereby repairing the DNA damage induced by ROS and promoting CM proliferation in vitro. The in vivo results indicated that enhanced Tert could significantly improve cardiac function and prognosis by alleviating CM DNA damage and promoting angiogenesis post-MI. In terms of mechanism, DNA pulldown assay was used to identify that nuclear ribonucleoprotein A2B1 (hnRNPA2B1) could be an upstream regulator of Tert in CMs. Overexpressed Tert could activate the NF-κB signaling pathway in CMs and bind to the VEGF promoter in the endothelium to increase the VEGF level. Further immunoblotting showed that Tert protected DNA from ROS-induced damage by inhibiting ATM phosphorylation and blocking the Chk1/p53/p21 pathway activation. HnRNPA2B1-activated Tert could repair the ROS-induced telomeric DNA damage to induce the cell cycle re-entry in CMs and enhance the interaction between CMs and endothelium, thus achieving cardiac regenerative repair after MI.

10.
Heliyon ; 10(15): e34783, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39144928

RESUMO

In this paper, the degradation of PEMFC under different operating conditions in dynamic cycle condition is studied. Firstly, according to the failure mechanism of PEMFC, various operating conditions in dynamic cycle condition are classified, and the health indexes are established. Simultaneously, the rates and degrees of the output voltage decline of the PEMFC under different operating conditions during the dynamic cycling process were compared. Then, a model based on variational mode decomposition and long short-term memory with attention mechanism (VMD-LSTM-ATT) is proposed. Aiming at the performance of PEMFC is affected by the external operation, VMD is used to capture the global information and details, and filter out interference information. To improve the prediction accuracy, ATT is used to assign weight to the features. Finally, in order to verify the effectiveness and superiority of VMD-LSTM-ATT, we respectively apply it to three current conditions under dynamic cycle conditions. The experimental results show that under the same test conditions, RMSE of VMD-LSTM-ATT is increased by 56.11 % and MAE is increased by 28.26 % compared with GRU attention. Compared with SVM, RNN, LSTM and LSTM-ATT, RMSE of VMD-LSTM-ATT is at least 17.26 % higher and MAE is at least 5.65 % higher.

11.
J Hazard Mater ; 476: 135170, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39002477

RESUMO

PURPOSE: This study aimed to evaluate the relationships of separate and mixed exposure of neonicotinoids on cardiometabolic risk at baseline and follow-up and its change over 3 years, and further explore whether inflammatory markers levels and platelet traits (PLT) mediate these relationships. METHODS: In this prospective cohort study from the Henan Rural Cohort Study, 2315 participants were involved at baseline, and 1841 participants completed cardiometabolic risk predictors determinations during the 3-year follow-up. Each neonicotinoid pesticide was normalized to imidacloprid (IMIeq) using the relative potency factor approach. Quantile-based g-computation (Qgcomp) regression was used to evaluate the effect of the mixtures of neonicotinoids mediation analysis was employed to explore whether inflammatory markers levels and platelet traits mediated these relationships. A two-sample mendelian randomization (MR) study was further used to causal association. RESULTS: Qgcomp regression revealed a statistically positive relationship between neonicotinoids mixture exposure and cardiometabolic risk score at baseline and follow-up over 3 years. Both neutrophils/monocytes and PLT were mediators in the relationship between IMIeq and cardiometabolic risk score at baseline and follow-up over 3 years. The causal risk effect of pesticide exposure were 2.50 (0.05, 4.95) and 5.24 (1.28, 9.19) for cardiometabolic risk indicators including insulin resistance and triglyceride, respectively. Nevertheless, there was no correlation discovered between pesticide exposure and other markers of cardiometabolic risk. CONCLUSION: Neonicotinoid insecticides exposure was connected to an increased cardiometabolic risk, especially in individuals with T2DM. Furthermore, inflammatory markers and PLT seem to be two vital mediators of these associations. Additionally, genetic evidence on pesticide exposure and cardiometabolic risk still needs to be validated by multiregional and multiethnic GWAS studies.


Assuntos
Inseticidas , Análise da Randomização Mendeliana , Neonicotinoides , População Rural , Humanos , Neonicotinoides/toxicidade , China , Masculino , Feminino , Estudos Prospectivos , Pessoa de Meia-Idade , Inseticidas/toxicidade , Adulto , Exposição Ambiental/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Fatores de Risco Cardiometabólico , População do Leste Asiático , Nitrocompostos
12.
Huan Jing Ke Xue ; 45(7): 3953-3964, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022943

RESUMO

In order to explore the spatiotemporal variation characteristics and driving mechanism of water quality in the Xiangjiang River Basin, the data of 16 water quality parameters at 113 stations over 26 years from 1990 to 2016 in the Xiangjiang River Basin were collected for synthetically assessing the water quality and identifying its main pollutants through the water quality index and other methods. The causal mechanism of water quality, especially the driving effect of water level and land use pattern, was analyzed. The results showed that: ① The overall water quality grade of the Xiangjiang River Basin during the study period was "good." However, the water quality deteriorated first (from 1990 to 2003) and then improved (from 2004 to 2016). The season variation in water quality was not obvious, but the water quality fluctuation of the wet season was larger. The water pollution load of the main stream decreased successively from the middle reaches, downstream reaches, and upstream reaches. The upstream tributaries had the best water quality, whereas areas with poor water quality were mainly distributed at the mouth of the middle and downstream tributaries, especially in areas where multiple tributaries converged. ② Toxic heavy metals had the characteristics of toxicity, persistence, and bioaccumulation. If they exceeded a certain concentration in water, they were difficult to purify, posing great harm to the natural environment and human health. The toxic metal index (CI1) was the leading factor affecting water quality, in which Hg and Cd were the main parameters affecting the overall water quality of the Xiangjiang River Basin. ③ The water level had a positive impact on the water quality of the Xiangjiang River by diluting environmental parameters. Land type had little effect on heavy metal concentration, whereas forest land could improve water quality. Grassland had a negative correlation with permanganate index over a large scale range (≥ 5 km). The increase in water bodies, arable land, and impermeable surface areas within the watershed increased the probability of high fecal coliform concentration in the water body. ④ With the increase in buffer distance, the water quality explained by the land use pattern increased. On the scale of 10 km buffer zone in the riparian zone, the explanation degree by land use pattern on water quality was the highest, which was an effective scale for water quality control of the Xiangjiang River. This research showed that the driving factors of heavy metal pollution and other pollution were different, but their regional differences were all obvious in the Xiangjiang River Basin. Therefore, pollution control should be classified and taken according to local conditions.

13.
Plant Dis ; : PDIS02240297RE, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-38853337

RESUMO

Wheat (Triticum aestivum L.) is one of the most important crops worldwide. Powdery mildew caused by Blumeria graminis f. sp. tritici is a destructive disease threatening wheat yield and quality. The utilization of resistant genes and cultivars is considered the most economical, environmentally friendly, and effective method to control powdery mildew. Wheat breeding line Jingzi 102 was highly resistant to powdery mildew at both seedling and adult plant stages. Genetic analysis of F1, F2, and F2:3 populations of "Jingzi 102 × Shixin 828" showed that the resistance of Jingzi 102 against powdery mildew isolate E09 at the seedling stage was controlled by a single dominant gene, temporarily designated PmJZ. Using bulked segregant RNA sequencing combined with molecular markers analysis, PmJZ was located on the long arm of chromosome 2B and flanked by markers BJK695-1 and CIT02g-20 with the genetic distances of 1.2 and 0.5 centimorgan, respectively, corresponding to the bread wheat genome of Chinese Spring (International Wheat Genome Sequencing Consortium RefSeq v2.1) 703.8 to 707.6 Mb. PmJZ is most likely different from the documented Pm genes on chromosome 2BL based on their physical positions, molecular markers analysis, and resistance spectrum. Based on the gene annotation information, five genes related to disease resistance could be considered as the candidate genes of PmJZ. To accelerate the application of PmJZ, the flanking markers BJK695-1 and CIT02g-20 can serve for marker-assisted selection of PmJZ in wheat disease-resistance breeding.

14.
BMC Health Serv Res ; 24(1): 756, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907246

RESUMO

BACKGROUND: This study reviews the research status of Diagnosis-related groups (DRGs) payment system in China and globally by analyzing topical issues in this field and exploring the evolutionary trends of DRGs in different developmental stages. METHODS: Abstracts of relevant literature in the field of DRGs were extracted from the China National Knowledge Infrastructure (CNKI) database and the Web of Science (WoS) core database and used as text data. A probabilistic distribution-based Latent Dirichlet Allocation (LDA) topic model was applied to mine the text topics. Topical issues were determined by topic intensity, and the cosine similarity of the topics in adjacent stages was calculated to analyze the topic evolution trend. RESULTS: A total of 6,758 English articles and 3,321 Chinese articles were included. Foreign research on DRGs focuses on grouping optimization, implementation effects, and influencing factors, whereas research topics in China focus on grouping and payment mechanism establishment, medical cost change evaluation, medical quality control, and performance management reform exploration. CONCLUSIONS: Currently, the field of DRGs in China is developing rapidly and attracting deepening research. However, the implementation depth of research in China remains insufficient compared with the in-depth research conducted abroad.


Assuntos
Grupos Diagnósticos Relacionados , China
15.
Front Plant Sci ; 15: 1356723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835863

RESUMO

Fusarium crown rot (FCR) is an important and devastating disease of wheat (Triticum aestivum) caused by the fungus Fusarium pseudograminearum and related pathogens. Using two distinct susceptible cultivars, we investigated the isolation frequencies of F. pseudograminearum and quantified its biomass accumulation and the levels of the associated toxins deoxynivalenol (DON) and DON-3-glucoside (D3G) in inoculated field-grown wheat plants. We detected F. pseudograminearum in stem, peduncle, rachis, and husk tissues, but not in grains, whereas DON and D3G accumulated in stem, rachis, husk, and grain tissues. Disease severity was positively correlated with the frequency of pathogen isolation, F. pseudograminearum biomass, and mycotoxin levels. The amount of F. pseudograminearum biomass and mycotoxin contents in asymptomatic tissue of diseased plants were associated with the distance of the tissue from the diseased internode and the disease severity of the plant. Thus, apparently healthy tissue may harbor F. pseudograminearum and contain associated mycotoxins. This research helps clarify the relationship between F. pseudograminearum occurrence, F. pseudograminearum biomass, and mycotoxin accumulation in tissues of susceptible wheat cultivars with or without disease symptoms, providing information that can lead to more effective control measures.

16.
J Investig Med ; : 10815589241254044, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38715211

RESUMO

Spinal cord ischemia-reperfusion injury (SCIRI) is a major contributor to neurological damage and mortality associated with spinal cord dysfunction. This study aims to explore the possible mechanism of Propofol and G-protein-coupled receptor-interacting protein 1 (GIT1) in regulating SCIRI in rat models. SCIRI rat models were established and injected with Propofol, over expression of GIT1 (OE-GIT1), or PI3K inhibitor (LY294002). The neurological function was assessed using Tarlov scoring system, and Hematoxylin & Eosin (H&E) staining was applied to observe morphology changes in spinal cord tissues. Cell apoptosis, blood-spinal cord barriers (BSCB) permeability, and inflammatory cytokines were determined by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, evans blue (EB) staining, and enzyme-linked immuno sorbent assay (ELISA), respectively. Reverse transcription-quantitative polymerase chain reaction and western blot were used to detect the expression levels of GIT1, endothelial nitric oxide synthase (eNOS), PI3K/AKT signal pathway and apoptosis-related proteins. SCIRI rats had decreased expressions of GIT1 and PI3K/AKT-related proteins, whose expressions can be elevated in response to Propofol treatment. LY294002 can also decrease GIT1 expression levels in SCIRI rats. Propofol can attenuate neurological dysfunction induced by SCIRI, decrease spinal cord tissue injury and BSCB permeability in addition to suppressing cell apoptosis and inflammatory cytokines, whereas further treatment by LY294002 can partially reverse the protective effect of Propofol on SCIRI. Propofol can activate PI3K/AKT signal pathway to increase GIT1 expression level, thus attenuating SCIRI in rat models.

17.
Int J Biol Sci ; 20(6): 2072-2091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617528

RESUMO

Background: It had been shown that selective cardiac vagal activation holds great potential for heart regeneration. Optogenetics has clinical translation potential as a novel means of modulating targeted neurons. This study aimed to investigate whether cardiac vagal activation via optogenetics could improve heart regenerative repair after myocardial infarction (MI) and to identify the underlying mechanism. Methods: We used an adeno-associated virus (AAV) as the vector to deliver ChR2, a light-sensitive protein, to the left nodose ganglion (LNG). To assess the effects of the cardiac vagus nerve on cardiomyocyte (CM) proliferation and myocardial regeneration in vivo, the light-emitting diode illumination (470 nm) was applied for optogenetic stimulation to perform the gain-of-function experiment and the vagotomy was used as a loss-of-function assay. Finally, sequencing data and molecular biology experiments were analyzed to determine the possible mechanisms by which the cardiac vagus nerve affects myocardial regenerative repair after MI. Results: Absence of cardiac surface vagus nerve after MI was more common in adult hearts with low proliferative capacity, causing a poor prognosis. Gain- and loss-of-function experiments further demonstrated that optogenetic stimulation of the cardiac vagus nerve positively regulated cardiomyocyte (CM) proliferation and myocardial regeneration in vivo. More importantly, optogenetic stimulation attenuated ventricular remodeling and improved cardiac function after MI. Further analysis of sequencing results and flow cytometry revealed that cardiac vagal stimulation activated the IL-10/STAT3 pathway and promoted the polarization of cardiac macrophages to the M2 type, resulting in beneficial cardiac regenerative repair after MI. Conclusions: Targeting the cardiac vagus nerve by optogenetic stimulation induced macrophage M2 polarization by activating the IL-10/STAT3 signaling pathway, which obviously optimized the regenerative microenvironment and then improved cardiac function after MI.


Assuntos
Interleucina-10 , Infarto do Miocárdio , Adulto , Humanos , Interleucina-10/genética , Optogenética , Infarto do Miocárdio/terapia , Nervo Vago , Miócitos Cardíacos
18.
Sci Total Environ ; 930: 172711, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38688361

RESUMO

BACKGROUND AND OBJECTIVE: Considering the widespread use of organophosphorus pesticides (OPs) and the global prevalence of hypertension (HTN), as well as studies indicating that different glycemic statuses may respond differently to the biological effects of OPs. Therefore, this study, based on the Henan rural cohort, aims to investigate the association between OPs exposure and HTN, and further explores whether lipids mediate these associations. METHODS: We measured the plasma levels of OPs in 2730 participants under different glycemic statuses using gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). A generalized linear model, Quantile g-computation (QGC), adaptive elastic net (AENET), and Bayesian kernel machine regression (BKMR) models were used to assess the impact of OPs exposure on HTN, with least absolute shrinkage and selection operator (LASSO) penalty regression identifying main OPs. Mediation models were used to evaluate the intermediary role of blood lipids in the OPs-HTN relationship. RESULTS: The detection rates for all OPs were high, ranging from 76.35 % to 99.17 %. In the normal glucose tolerance (NGT) population, single exposure models indicated that malathion and phenthoate were associated with an increased incidence of HTN (P-FDR < 0.05), with corresponding odds ratios (ORs) and 95 % confidence intervals (CIs) of 1.624 (1.167,2.260) and 1.290 (1.072,1.553), respectively. QGC demonstrated a positive association between OP mixtures and HTN, with malathion and phenthoate being the primary contributors. Additionally, the AENET model's Exposure Response Score (ERS) suggested that the risk of HTN increases with higher ERS (P < 0.001). Furthermore, BKMR revealed that co-exposure to OPs increases HTN risk, with phenthoate having a significant impact. Furthermore, triglycerides (TG) mediated 6.55 % of the association between phenthoate and HTN. However, no association was observed in the impaired fasting glucose (IFG) and type 2 diabetes mellitus (T2DM) populations. CONCLUSIONS: Our findings suggest that in the NGT population, OPs may significantly contribute to the development of HTN, proposing TG as a potential novel target for HTN prevention.


Assuntos
Exposição Ambiental , Hipertensão , Compostos Organofosforados , Humanos , Hipertensão/epidemiologia , Exposição Ambiental/estatística & dados numéricos , China/epidemiologia , Pessoa de Meia-Idade , Masculino , Feminino , Lipídeos/sangue , Adulto , Praguicidas , Glicemia/análise , Poluentes Ambientais/sangue
19.
Adv Mater ; 36(27): e2400333, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38652082

RESUMO

Wireless and wearable sensors attract considerable interest in personalized healthcare by providing a unique approach for remote, noncontact, and continuous monitoring of various health-related signals without interference with daily life. Recent advances in wireless technologies and wearable sensors have promoted practical applications due to their significantly improved characteristics, such as reduction in size and thickness, enhancement in flexibility and stretchability, and improved conformability to the human body. Currently, most researches focus on active materials and structural designs for wearable sensors, with just a few exceptions reflecting on the technologies for wireless data transmission. This review provides a comprehensive overview of the state-of-the-art wireless technologies and related studies on empowering wearable sensors. The emerging functional nanomaterials utilized for designing unique wireless modules are highlighted, which include metals, carbons, and MXenes. Additionally, the review outlines the system-level integration of wireless modules with flexible sensors, spanning from novel design strategies for enhanced conformability to efficient transmitting data wirelessly. Furthermore, the review introduces representative applications for remote and noninvasive monitoring of physiological signals through on-skin and implantable wireless flexible sensing systems. Finally, the challenges, perspectives, and unprecedented opportunities for wireless and wearable sensors are discussed.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Tecnologia sem Fio/instrumentação , Humanos , Desenho de Equipamento , Nanoestruturas/química , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
20.
Int Immunopharmacol ; 132: 112027, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38603860

RESUMO

BACKGROUND AND PURPOSE: Osteoporosis (OP) is a frequent clinical problem for the elderly. Traditional Chinese Medicine (TCM) has achieved beneficial results in the treatment of OP. Ziyuglycoside II (ZGS II) is a major active compound of Sanguisorba officinalis L. that has shown anti-inflammation and antioxidation properties, but little information concerning its anti-OP potential is available. Our research aims to investigate the mechanism of ZGS II in ameliorating bone loss by inflammatory responses and regulation of gut microbiota and short chain fatty acids (SCFAs) in ovariectomized (OVX) mice. METHODS: We predicted the mode of ZGS II action on OP through network pharmacology and molecular docking, and an OVX mouse model was employed to validate its anti-OP efficacy. Then we analyzed its impact on bone microstructure, the levels of inflammatory cytokines and pain mediators in serum, inflammation in colon, intestinal barrier, gut microbiota composition and SCFAs in feces. RESULTS: Network pharmacology identified 55 intersecting targets of ZGS II related to OP. Of these, we predicted IGF1 may be the core target, which was successfully docked with ZGS II and showed excellent binding ability. Our in vivo results showed that ZGS II alleviated bone loss in OVX mice, attenuated systemic inflammation, enhanced intestinal barrier, reduced the pain threshold, modulated the abundance of gut microbiota involving norank_f__Muribaculaceae and Dubosiella, and increased the content of acetic acid and propanoic acid in SCFAs. CONCLUSIONS: Our data indicated that ZGS II attenuated bone loss in OVX mice by relieving inflammation and regulating gut microbiota and SCFAs.


Assuntos
Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Simulação de Acoplamento Molecular , Osteoporose , Ovariectomia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Feminino , Camundongos , Osteoporose/tratamento farmacológico , Osteoporose/imunologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Saponinas/farmacologia , Saponinas/uso terapêutico , Humanos , Citocinas/metabolismo , Farmacologia em Rede , Inflamação/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA