Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490743

RESUMO

Research into the role of brain oscillations in basic perceptual and cognitive functions has suggested that the alpha rhythm reflects functional inhibition while the beta rhythm reflects neural ensemble (re)activation. However, little is known regarding the generalization of these proposed fundamental operations to linguistic processes, such as speech comprehension and production. Here, we recorded magnetoencephalography in participants performing a novel rule-switching paradigm. Specifically, Dutch native speakers had to produce an alternative exemplar from the same category or a feature of a given target word embedded in spoken sentences (e.g., for the word "tuna", an exemplar from the same category-"seafood"-would be "shrimp", and a feature would be "pink"). A cue indicated the task rule-exemplar or feature-either before (pre-cue) or after (retro-cue) listening to the sentence. Alpha power during the working memory delay was lower for retro-cue compared with that for pre-cue in the left hemispheric language-related regions. Critically, alpha power negatively correlated with reaction times, suggestive of alpha facilitating task performance by regulating inhibition in regions linked to lexical retrieval. Furthermore, we observed a different spatiotemporal pattern of beta activity for exemplars versus features in the right temporoparietal regions, in line with the proposed role of beta in recruiting neural networks for the encoding of distinct categories. Overall, our study provides evidence for the generalizability of the role of alpha and beta oscillations from perceptual to more "complex, linguistic processes" and offers a novel task to investigate links between rule-switching, working memory, and word production.


Assuntos
Encéfalo , Idioma , Humanos , Encéfalo/fisiologia , Magnetoencefalografia , Compreensão/fisiologia , Linguística , Ritmo alfa/fisiologia
2.
Neuroimage ; 278: 120290, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482324

RESUMO

Alpha oscillations are thought to be involved in suppressing distracting input in working-memory tasks. Yet, the spatial-temporal dynamics of such suppression remain unclear. Key questions are whether such suppression reflects a domain-general inattentiveness mechanism, or occurs in a stimulus- or modality-specific manner within cortical areas most responsive to the distracters; and whether the suppression is proactive (i.e., preparatory) or reactive. Here, we addressed these questions using a working-memory task where participants had to memorize an array of visually presented digits and reproduce one of them upon being probed. We manipulated the presence of distracters and the sensory modality in which distracters were presented during memory maintenance. Our results show that sensory areas most responsive to visual and auditory distracters exhibited stronger alpha power increase after visual and auditory distracter presentation respectively. These results suggest that alpha oscillations underlie distracter suppression in a reactive, modality-specific manner.


Assuntos
Ritmo alfa , Memória de Curto Prazo , Humanos
3.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35977824

RESUMO

Neural oscillations are thought to reflect low-level operations that can be used for higher-level cognitive functions. Here, we investigated the role of brain rhythms in the 1-30 Hz range by recording MEG in human participants performing a visual delayed match-to-sample paradigm in which orientation or spatial frequency of sample and probe gratings had to be matched. A cue occurring before or after sample presentation indicated the to-be-matched feature. We demonstrate that alpha/beta power decrease tracks the presentation of the informative cue and indexes faster responses. Moreover, these faster responses coincided with an augmented phase alignment of slow oscillations, as well as phase-amplitude coupling between slow and fast oscillations. Importantly, stimulus decodability was boosted by both low alpha power and high beta power. In summary, we provide support for a comprehensive framework in which different rhythms play specific roles: slow rhythms control input sampling, while alpha (and beta) gates the information flow, beta recruits task-relevant circuits, and the timing of faster oscillations is controlled by slower ones.


Assuntos
Ritmo alfa , Memória de Curto Prazo , Ritmo alfa/fisiologia , Encéfalo/fisiologia , Cognição , Humanos , Memória de Curto Prazo/fisiologia
4.
Sci Rep ; 12(1): 9071, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641536

RESUMO

Threatening situations ask for rapid and accurate perceptual decisions to optimize coping. Theoretical models have stated that psychophysiological states, such as bradycardia during threat-anticipatory freezing, may facilitate perception. However, it's unclear if this occurs via enhanced bottom-up sensory processing or by relying more on prior expectations. To test this, 52 (26 female) participants completed a visual target-detection paradigm under threat-of-shock (15% reinforcement rate) with a manipulation of prior expectations. Participants judged the presence of a backward-masked grating (target presence rate 50%) after systematically manipulating their decision criterion with a rare (20%) or frequent (80%) target presence rate procedure. Threat-of-shock induced stronger heart rate deceleration compared to safe, indicative of threat-anticipatory freezing. Importantly, threat-of-shock enhanced perceptual sensitivity but we did not find evidence of an altered influence of the effect of prior expectations on current decisions. Correct target detection (hits) was furthermore accompanied by an increase in the magnitude of this heart rate deceleration compared to a missed target. While this was independent of threat-of-shock manipulation, only under threat-of-shock this increase was accompanied by more hits and increased sensitivity. Together, these findings suggest that under acute threat participants may rely more on bottom-up sensory processing versus prior expectations in perceptual decision-making. Critically, bradycardia may underlie such enhanced perceptual sensitivity.


Assuntos
Bradicardia , Feminino , Humanos
5.
J Neurosci ; 41(46): 9581-9592, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34593605

RESUMO

Alpha activity (8-14 Hz) is the dominant rhythm in the awake brain and is thought to play an important role in setting the internal state of the brain. Previous work has associated states of decreased alpha power with enhanced neural excitability. However, evidence is mixed on whether and how such excitability enhancement modulates sensory signals of interest versus noise differently, and what, if any, are the consequences for subsequent perception. Here, human subjects (male and female) performed a visual detection task in which we manipulated their decision criteria in a blockwise manner. Although our manipulation led to substantial criterion shifts, these shifts were not reflected in prestimulus alpha band changes. Rather, lower prestimulus alpha power in occipital-parietal areas improved perceptual sensitivity and enhanced information content decodable from neural activity patterns. Additionally, oscillatory alpha phase immediately before stimulus presentation modulated accuracy. Together, our results suggest that alpha band dynamics modulate sensory signals of interest more strongly than noise.SIGNIFICANCE STATEMENT The internal state of our brain fluctuates, giving rise to variability in perception and action. Neural oscillations, most prominently in the alpha band, have been suggested to play a role in setting this internal state. Here, we show that ongoing alpha band activity in occipital-parietal regions predicts the quality of visual information decodable in neural activity patterns and subsequently the human observer's sensitivity in a visual detection task. Our results provide comprehensive evidence that visual representation is modulated by ongoing alpha band activity and advance our understanding on how, when faced with unchanging external stimuli, internal neural fluctuations influence perception and behavior.


Assuntos
Ritmo alfa/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Percepção Visual/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia
6.
Atten Percept Psychophys ; 82(1): 312-329, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31317395

RESUMO

Visual attention prioritizes the processing of sensory information at specific spatial locations (spatial attention; SA) or with specific feature values (feature-based attention; FBA). SA is well characterized in terms of behavior, brain activity, and temporal dynamics-for both top-down (endogenous) and bottom-up (exogenous) spatial orienting. FBA has been thoroughly studied in terms of top-down endogenous orienting, but much less is known about the potential of bottom-up exogenous influences of FBA. Here, in four experiments, we adapted a procedure used in two previous studies that reported exogenous FBA effects, with the goal of replicating and expanding on these findings, especially regarding its temporal dynamics. Unlike the two previous studies, we did not find significant effects of exogenous FBA. This was true (1) whether accuracy or RT was prioritized as the main measure, (2) with precues presented peripherally or centrally, (3) with cue-to-stimulus ISIs of varying durations, (4) with four or eight possible target locations, (5) at different meridians, (6) with either brief or long stimulus presentations, (7) and with either fixation contingent or noncontingent stimulus displays. In the last experiment, a postexperiment participant questionnaire indicated that only a small subset of participants, who mistakenly believed the irrelevant color of the precue indicated which stimulus was the target, exhibited benefits for valid exogenous FBA precues. Overall, we conclude that with the protocol used in the studies reporting exogenous FBA, the exogenous stimulus-driven influence of FBA is elusive at best, and that FBA is primarily a top-down, goal-driven process.


Assuntos
Atenção/fisiologia , Orientação Espacial , Percepção Visual/fisiologia , Adulto , Sinais (Psicologia) , Feminino , Humanos , Masculino , Percepção Espacial
7.
J Cogn Neurosci ; 32(4): 691-702, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31820679

RESUMO

Perceptual expectations can change how a visual stimulus is perceived. Recent studies have shown mixed results in terms of whether expectations modulate sensory representations. Here, we used a statistical learning paradigm to study the temporal characteristics of perceptual expectations. We presented participants with pairs of object images organized in a predictive manner and then recorded their brain activity with magnetoencephalography while they viewed expected and unexpected image pairs on the subsequent day. We observed stronger alpha-band (7-14 Hz) activity in response to unexpected compared with expected object images. Specifically, the alpha-band modulation occurred as early as the onset of the stimuli and was most pronounced in left occipito-temporal cortex. Given that the differential response to expected versus unexpected stimuli occurred in sensory regions early in time, our results suggest that expectations modulate perceptual decision-making by changing the sensory response elicited by the stimuli.


Assuntos
Ritmo alfa , Encéfalo/fisiologia , Aprendizagem/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Magnetoencefalografia , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...