Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 665: 693-701, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552584

RESUMO

Metal-Organic Framework (MOF) membranes act as selective layers have offered unprecedented opportunities for energy-efficient and cost-effective gas separation. Searching for the green and sustainable synthesis method of dense MOF membrane has received huge attention in both academia and industry. In this work, we demonstrate an in situ electrochemical potential-induced synthesis strategy to aqueously fabricate Metal Azolate Framework-4 (MAF-4) membranes on polypropylene (PP) support. The constant potential can induce the heterogeneous nucleation and growth of MAF-4, resulting an ultrathin membrane with the thickness of only 390 nm. This high-quality membrane exhibits a high H2/CO2 separation performance with the H2 permeance as high as 1565.75 GPU and selectivity of 11.6. The deployment of this environment friendly one-step fabrication method under mild reaction conditions, such as low-cost polymer substrate, water instead of organic solvent, room temperature and ambient pressure shows great promise for the scale-up of MOF membranes.

2.
ACS Omega ; 6(22): 14078-14089, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34124431

RESUMO

ZnO nanorod arrays (NRAs) were fabricated on polyester fabrics (PFs) by a two-step method and modified with Ag by magnetron sputtering. The photogenerated charge transport properties of the Ag/ZnO nanorod heterojunctions were studied by a self-made Kelvin probe system and a surface photovoltage (SPV) test system. The measured work functions (WFs) of the deposited Ag and ZnO nanorod are 4.67 and 5.56 eV, respectively. The SPV spectra indicate that the direction of the inner electric field is from the Ag layer to the inner of the ZnO nanorod. The enhancement of light absorption by the local surface plasma resonance (LSPR) effect of Ag/ZnO NRA was observed by Raman microspectroscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Ag/ZnO NRA-functionalized PFs was evaluated by the photocatalytic degradation of Rhodamine B (RB) solution under visible light. The full photo-oxidation of RB and the outperforming ZnO NRA-coated PFs demonstrate that the enhanced photocatalytic performance of Ag/ZnO NRA-coated PFs results from the cooperation of the inner electric field of the Ag/ZnO nanorod heterojunction and Ag LSPR.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24454505

RESUMO

Despite many successful applications of Chinese herbal medicine (CHM) in the treatment and prevention of neurological diseases (ND), the fully scientific understanding of CHM's action mechanisms had been hampered for lack of appropriate methods to explore the combinatorial rules, the synergistic mechanisms, and the molecular basis of CHM. As an improved pharmacology approach, cerebrospinal fluid pharmacology (CSFP), based on the fact that cerebrospinal fluid plays an important role in the health maintenance of specific survival environment for neurons and glial cells, has been constructed and applied to CHM research for treating ND. In the present review, the concept and advantages of CSFP are briefly introduced. The approaches and key technologies of CSFP in CHM research are also collated and analyzed. Furthermore, the developing tendency of CSFP is summarized, and its framework in CHM research is also proposed. In summary, CSFP provides a new strategy not only to eliminate some barriers of CHM research for treating ND, but also to broaden the pharmacology research for bridging the gap between CHM and modern medicine. Moreover, the advancements in CSFP will bring about a conceptual move in active ingredients discovery of CHM and make a significant contribution to CHM modernization and globalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...