Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1013412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388502

RESUMO

Anthocyanins are the visual pigments that present most of the colors in plants. Its biosynthesis requires the coordinated expression of structural genes and regulatory genes. Pericarps are the rich sources of anthocyanins in maize seeds. In the experiment, the transcriptomes of transparent and anthocyanins-enriched pericarps at 15, 20, and 25 DAP were obtained. The results output 110.007 million raw reads and 51407 genes' expression matrix. Using data filtration in R language, 2057 genes were eventually identified for weighted gene co-expression network analysis. The results showed that 2057 genes were classified into ten modules. The cyan module containing 183 genes was confirmed to be the key module with the highest correlation value of 0.98 to the anthocyanins trait. Among 183 genes, seven structural genes were mapped the flavonoid biosynthesis pathway, and a transcription factor Lc gene was annotated as an anthocyanin regulatory gene. Cluster heatmap and gene network analysis further demonstrated that Naringenin, 2-oxoglutarate 3-dioxygenase (Zm00001d001960), Dihydroflavonol 4-reductase (Zm00001d044122), Leucoanthocyanidin dioxygenase (Zm00001d014914), anthocyanin regulatory Lc gene (Zm00001d026147), and Chalcone synthase C2 (Zm00001d052673) participated in the anthocyanins biosynthesis. And the transcription factor anthocyanin regulatory Lc gene Zm00001d026147 may act on the genes Chalcone synthase C2 (Zm00001d052673) and Dihydroflavonol 4-reductase (Zm00001d044122). The yeast one-hybrid assays confirmed that the Lc protein could combine with the promoter region of C2 and directly regulate the anthocyanin biosynthesis in the pericarp. These results may provide a new sight to uncover the module and hub genes related to anthocyanins biosynthesis in plants.

2.
Front Plant Sci ; 13: 915400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755662

RESUMO

The endosperm of corn kernel consists of two components, a horny endosperm, and a floury endosperm. In the experiment, a kind of floury endosperm corn was identified. The result of phenotypic trait analysis and determination of amino acid content showed that the floury endosperm filled with the small, loose, and scattered irregular spherical shape starch granules and contained higher content of amino acid. The starch biochemical properties are similar between floury corns and regular flint corn. By using dynamically comparative transcriptome analysis of endosperm at 20, 25, and 30 DAP, a total of 113.42 million raw reads and 50.508 thousand genes were obtained. By using the weighted gene co-expression network analysis, 806 genes and six modules were identified. And the turquoise module with 459 genes was proved to be the key module closely related to the floury endosperm formation. Nine zein genes in turquoise module, including two zein-alpha A20 (Zm00001d019155 and Zm00001d019156), two zein-alpha A30 (Zm00001d048849 and Zm00001d048850), one 50 kDa gamma-zein (Zm00001d020591), one 22 kDa alpha-zein 14 (Zm00001d048817), one zein-alpha 19D1 (Zm00001d030855), one zein-alpha 19B1 (Zm00001d048848), and one FLOURY 2 (Zm00001d048808) were identified closely related the floury endosperm formation. Both zein-alpha 19B1 (Zm00001d048848) and zein-alpha A30 (Zm00001d048850) function as source genes with the highest expression level in floury endosperm. These results may provide the supplementary molecular mechanism of structure and nutrient formation for the floury endosperm of maize.

4.
PeerJ ; 9: e10567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628629

RESUMO

Chlorophylls, green pigments in chloroplasts, are essential for photosynthesis. Reduction in chlorophyll content may result in retarded growth, dwarfism, and sterility. In this study, a yellow-green leaf mutant of maize, indicative of abnormity in chlorophyll content, was identified. The physiological parameters of this mutant were measured. Next, global gene expression of this mutant was determined using transcriptome analysis and compared to that of wild-type maize plants. The yellow-green leaf mutant of maize was found to contain lower contents of chlorophyll a, chlorophyll b and carotenoid compounds. It contained fewer active PSII centers and displayed lower values of original chlorophyll fluorescence parameters than the wild-type plants. The real-time fluorescence yield, the electron transport rate, and the net photosynthetic rate of the mutant plants showed reduction as well. In contrast, the maximum photochemical quantum yield of PSII of the mutant plants was similar to that of the wild-type plants. Comparative transcriptome analysis of the mutant plants and wild-type plants led to the identification of differentially expressed 1,122 genes, of which 536 genes were up-regulated and 586 genes down-regulated in the mutant. Five genes in the chlorophyll metabolism pathway, nine genes in the tricarboxylic acid cycle and seven genes related to the conversion of sucrose to starch displayed down-regulated expression. In contrast, genes encoding a photosystem II reaction center PsbP family protein and the PGR5-like protein 1A (PGRL1A) exhibited increased transcript abundance.

5.
Sci Rep ; 9(1): 2485, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792433

RESUMO

Purple corn is a rich source of anthocyanins. In the experiment, two anthocyanins-enriched purple corn lines Ha0414 and Ha6130 were identified. The anthocyanins were respectively accumulated in the pericarp of Ha0414 and the aleurone layer of Ha6130 with different composition and content. Transcriptome analysis of the two tissues in both lines identified 16 and 14 differentially expressed genes belonging to anthocyanin metabolism pathway in pericarp and the aleurone layer, individually. Of these genes, two genes encoding 2-oxoglutarate (2OG) and Fe (II)-dependent oxygenase superfamily proteins, and one gene annotated as UDP-glycosyltransferase superfamily protein exhibited increased transcript abundance in both the colored pericarp and aleurone layer. Otherwise, one gene annotated as flavonoid 3', 5'-hydroxylase, and another gene encoding flavonoid 3'-monooxygenase displayed increased transcript abundance in the aleurone layer of Ha6130. Moreover, 36 transcription factors were identified with increased transcript abundance in the pericarp of Ha0414, such as bHLH transcription factors, WRKY transcription factors, and HB transcription factors. And 79 transcription factors were isolated with an increased expression level in the aleurone layer of Ha6130, including MYB transcription factors, MYB-related transcription factors, and bHLH transcription factors. These genes expression may result in the tissue-specific accumulation of anthocyanins in pericarp and aleurone layer.


Assuntos
Antocianinas/biossíntese , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Zea mays/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Oxigenases de Função Mista/genética , Especificidade de Órgãos , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/genética , Zea mays/genética , Zea mays/metabolismo
6.
Intervirology ; 53(4): 211-20, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20332650

RESUMO

OBJECTIVES: To characterize morphological, physicochemical and genomic features of a novel virulent coliphage which was isolated from an engineered Escherichia coli culture and termed engineered E. coli phage (EEP). METHODS AND RESULTS: Electron microscopy revealed that EEP has an icosahedral head (62 nm in diameter) and a long, flexible tail (138 nm in length). EEP was able to infect all 10 engineered E. coli strains kept in our laboratory, showing a strong ability to lyse engineered E. coli. Sequencing of the EEP genome revealed a double-stranded DNA (39.8 kb) with 54.72% GC content. Fifty-two open reading frames were predicted to be coding sequences, 18 of which were functionally defined and organized in a modular format, which includes modules for DNA replication, DNA packaging, structural proteins and host cell lysis. This phage could not be inactivated at 90 degrees for 45 min and was resistant to ethanol and alkali treatment. EEP is assigned to the Siphoviridae family based on its morphological, genomic and physicochemical properties. CONCLUSIONS: A novel coliphage was isolated from engineered E. coli strains, and its morphological, genomic and physicochemical properties were characterized, which will improve our knowledge of bacteriophage diversity.


Assuntos
Colífagos/genética , Colífagos/isolamento & purificação , DNA Viral/química , DNA Viral/genética , Escherichia coli/virologia , Genoma Viral , Composição de Bases , Colífagos/classificação , Colífagos/ultraestrutura , DNA/química , DNA/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Siphoviridae/ultraestrutura , Proteínas Virais/genética , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...