Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 103(15): e37736, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608121

RESUMO

Observational research shows a link between celiac disease (CeD) and sarcoidosis, but the causal link between CeD and sarcoidosis is still unknown. A two-sample Mendelian randomization (MR) study was conducted to ascertain the causal connection between the 2 disorders. In our two-sample MR analysis, we identified independent genetic variants associated with CeD using publicly accessible GWAS data from people of European ancestry. Summary data for sarcoidosis were obtained from the FinnGen Consortium, the UK-Biobank, and a large GWAS dataset. To assess the association between CeD and sarcoidosis, our MR analysis used inverse variance weighted (IVW) as the primary method, incorporating the MR-Egger, weighted median (WM), and MR-PRESSO (outliers test) as a complementary method. In order to ensure that the findings were reliable, several sensitivity analyses were performed. Our study indicated that CeD had a significant causal relationship with sarcoidosis (IVW odds ratio (OR) = 1.13, 95% confidence interval (CI): 1.07-1.20, P = 5.58E-05; WM OR = 1.12, 95% CI: 1.03-1.23, P = 1.03E-02; MR-Egger OR = 1.07, 95% CI: 0.96-1.19, P = 2.20E-01). Additionally, we obtain the same results in the duplicated datasets as well, which makes our results even more reliable. The results of this investigation did not reveal any evidence of horizontal pleiotropy or heterogeneity. Our MR analysis showed a causal effect between CeD and an elevated risk of sarcoidosis. Further study is still needed to confirm the findings and look into the processes underlying these relationships.


Assuntos
Doença Celíaca , Sarcoidose , Humanos , Doença Celíaca/complicações , Doença Celíaca/epidemiologia , Doença Celíaca/genética , Análise da Randomização Mendeliana , Sarcoidose/epidemiologia , Sarcoidose/genética , Causalidade , Razão de Chances
2.
Front Genet ; 13: 941996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092917

RESUMO

Constructing a novel bioinformatic workflow by reusing and repurposing fragments crossing workflows is regarded as an error-avoiding and effort-saving strategy. Traditional techniques have been proposed to discover scientific workflow fragments leveraging their profiles and historical usages of their activities (or services). However, social relations of workflows, including relations between services and their developers have not been explored extensively. In fact, current techniques describe invoking relations between services, mostly, and they can hardly reveal implicit relations between services. To address this challenge, we propose a social-aware scientific workflow knowledge graph (S 2 KG) to capture common types of entities and various types of relations by analyzing relevant information about bioinformatic workflows and their developers recorded in repositories. Using attributes of entities such as credit and creation time, the union impact of several positive and negative links in S 2 KG is identified, to evaluate the feasibility of workflow fragment construction. To facilitate the discovery of single services, a service invoking network is extracted form S 2 KG, and service communities are constructed accordingly. A bioinformatic workflow fragment discovery mechanism based on Yen's method is developed to discover appropriate fragments with respect to certain user's requirements. Extensive experiments are conducted, where bioinformatic workflows publicly accessible at the myExperiment repository are adopted. Evaluation results show that our technique performs better than the state-of-the-art techniques in terms of the precision, recall, and F1.

3.
Front Bioeng Biotechnol ; 10: 865130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445001

RESUMO

In this paper, a multidisciplinary cross-fusion of bionics, robotics, computer vision, and cloud service networks was used as a research platform to study wide-field bionic compound eye target recognition and detection from multiple perspectives. The current research status of wide-field bionic compound-eye target recognition and detection was analyzed, and improvement directions were proposed. The surface microlens array arrangement was designed, and the spaced surface bionic compound eye design principle cloud service network model was established for the adopted spaced-type circumferential hierarchical microlens array arrangement. In order to realize the target localization of the compound eye system, the content of each step of the localization scheme was discussed in detail. The distribution of virtual spherical targets was designed by using the subdivision of the positive icosahedron to ensure the uniformity of the targets. The spot image was pre-processed to achieve spot segmentation. The energy symmetry-based spot center localization algorithm was explored and its localization effect was verified. A suitable spatial interpolation method was selected to establish the mapping relationship between target angle and spot coordinates. An experimental platform of wide-field bionic compound eye target recognition and detection system was acquired. A super-resolution reconstruction algorithm combining pixel rearrangement and an improved iterative inverse projection method was used for image processing. The model was trained and evaluated in terms of detection accuracy, leakage rate, time overhead, and other evaluation indexes, and the test results showed that the cloud service network-based wide-field bionic compound eye target recognition and detection performs well in terms of detection accuracy and leakage rate. Compared with the traditional algorithm, the correct rate of the algorithm was increased by 21.72%. Through the research of this paper, the wide-field bionic compound eye target recognition and detection and cloud service network were organically provide more technical support for the design of wide-field bionic compound eye target recognition and detection system.

4.
Sensors (Basel) ; 18(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065224

RESUMO

This paper firstly replaces the first-come-first-service (FCFS) mechanism with the time-sharing (TS) mechanism in fog computing nodes (FCNs). Then a collaborative load-balancing algorithm for the TS mechanism is proposed for FCNs. The algorithm is a variant of a work-stealing scheduling algorithm, and is based on the Nash bargaining solution (NBS) for a cooperative game between FCNs. Pareto optimality is achieved through the collaborative working of FCNs to improve the performance of every FCN. Lastly the simulation results demonstrate that the game-theory based work-stealing algorithm (GWS) outperforms the classical work-stealing algorithm (CWS).

5.
Sensors (Basel) ; 15(12): 31620-43, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26694394

RESUMO

With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady.

6.
Sensors (Basel) ; 15(11): 29250-72, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26610495

RESUMO

Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results.

7.
Sensors (Basel) ; 15(7): 15033-66, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26131665

RESUMO

Wireless sensor networks, serving as an important interface between physical environments and computational systems, have been used extensively for supporting domain applications, where multiple-attribute sensory data are queried from the network continuously and periodically. Usually, certain sensory data may not vary significantly within a certain time duration for certain applications. In this setting, sensory data gathered at a certain time slot can be used for answering concurrent queries and may be reused for answering the forthcoming queries when the variation of these data is within a certain threshold. To address this challenge, a popularity-based cooperative caching mechanism is proposed in this article, where the popularity of sensory data is calculated according to the queries issued in recent time slots. This popularity reflects the possibility that sensory data are interested in the forthcoming queries. Generally, sensory data with the highest popularity are cached at the sink node, while sensory data that may not be interested in the forthcoming queries are cached in the head nodes of divided grid cells. Leveraging these cooperatively cached sensory data, queries are answered through composing these two-tier cached data. Experimental evaluation shows that this approach can reduce the network communication cost significantly and increase the network capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...