Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 6084-6091, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717110

RESUMO

Chiral perovskites play a pivotal role in spintronics and optoelectronic systems attributed to their chiral-induced spin selectivity (CISS) effect. Specifically, they allow for spin-polarized charge transport in spin light-emitting diodes (LEDs), yielding circularly polarized electroluminescence at room temperature without external magnetic fields. However, chiral lead bromide-based perovskites have yet to achieve high-performance green emissive spin-LEDs, owing to limited CISS effects and charge transport. Herein, we employ dimensional regulation and Sn2+-doping to optimize chiral bromide-based perovskite architecture for green emissive spin-LEDs. The optimized (PEA)x(S/R-PRDA)2-xSn0.1Pb0.9Br4 chiral perovskite film exhibits an enhanced CISS effect, higher hole mobility, and better energy level alignment with the emissive layer. These improvements allow us to fabricate green emissive spin-LEDs with an external quantum efficiency (EQE) of 5.7% and an asymmetry factor |gCP-EL| of 1.1 × 10-3. This work highlights the importance of tailored perovskite architectures and doping strategies in advancing spintronics for optoelectronic applications.

2.
J Am Chem Soc ; 142(6): 2956-2967, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31902206

RESUMO

All-inorganic lead halide perovskite nanocrystals (NCs) are potential candidates for fabricating high-performance light-emitting diodes (LEDs) owing to their precisely tunable bandgaps, high photoluminescence (PL) efficiency, and excellent color purities. However, the performance of pure red (630-640 nm) all-inorganic perovskite LEDs is still limited by the halide segregation-induced instability of the electroluminescence (EL) of mixed halide CsPbI3-xBrx NCs. Herein, we report an effective approach to improving the EL stability of pure red all-inorganic CsPbI3-xBrx NC-based LEDs via the passivation of potassium bromide on NCs. By adding potassium oleate to the reaction system, we obtained potassium bromide surface-passivated (KBr-passivated) CsPbI3-xBrx NCs with pure red PL emission and a photoluminescence quantum yield (PLQY) exceeding 90%. We determine that most potassium ions present on the surface of NCs bind with bromide ions and thus demonstrate that potassium bromide surface passivation of NCs can both improve the PL stability and inhibit the halide segregation of NCs. Using KBr-passivated CsPbI3-xBrx NCs as an emitting layer, we fabricated stable and pure red perovskite LEDs with emission at 637 nm, showing a maximum brightness of 2671 cd m-2, maximum external quantum efficiency of 3.55%, and good EL stability. The proposed KBr-passivated NC strategy will open a new avenue for fabricating efficient, stable, and tunable pure color perovskite NC LEDs.

3.
Inorg Chem ; 58(17): 11807-11818, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31398054

RESUMO

Lead halide perovskite nanocrystals (NCs) exhibit great application potential in optoelectronic devices because of their tunable band gaps and facile colloidal synthesis, but they suffer from serious lead toxicity and instability. It is highly desirable to substitute lead with other elements to acquire nontoxic and environmentally friendly lead-free perovskite NCs for optoelectronic devices. Here, we report a general method for the colloidal synthesis of a series of bismuth/antimony-based halide perovskite NCs with various constituents and optical band gaps from 1.97 to 3.15 eV. In our proposed synthetic system, 1-dodecanol is adopted as the solvent instead of the conventionally used 1-octadecene to realize size controllability of bismuth/antimony-based metal halide perovskite NCs. It is found that 1-dodecanol can act as a surfactant to tightly adsorb on the surface of bismuth/antimony-based halide perovskite NCs, enabling their small sizes (∼2 nm) and high dispersibility. Simultaneously, the band gaps of bismuth/antimony-based halide (A3B2X9, where A = CH3NH3, Cs, or Rb, B = Bi or Sb, and X = Cl, Br, or I) perovskite NCs can be systematically tuned by the atomic substitution of A, B, or X lattice sites. Moreover, to show the optoelectronic application potential of these lead-free halide perovskite NCs, a solar cell based on colloidal Cs3Bi2I9 perovskite NCs is demonstrated. The developed colloidal synthesis of bismuth/antimony-based halide NCs in 1-dodecanol will offer an alternative route to fabricating lead-free halide perovskite optoelectronic devices.

4.
Nat Commun ; 10(1): 2482, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171790

RESUMO

Lithium metal based anode with hierarchical structure to enable high rate capability, volume change accommodation, and dendritic suppression is highly desirable for all-solid-state lithium metal battery. However, the fabrication of hierarchical lithium metal based anode is challenging due to the volatility of lithium. Here, we report that natural diatomite can act as an excellent template for constructing hierarchical silicon-lithium based hybrid anode for high performance all-solid-state lithium metal battery. This hybrid anode exhibits stable lithium stripping/plating performance over 1000 h with average overpotential lower than 100 mV without any short circuit. Moreover, all-solid-state full cell using this lithium metal composite anode to couple with lithium iron phosphate cathode shows excellent cycling stability (0.04% capacity decay rate for 500 cycles at 0.5C) and high rate capability (65 mAh g-1 at 5C). The present natural diatomite derived hybrid anode could further promote the fabrication of high performance all-solid-state lithium batteries from sustainable natural resources.

5.
J Am Chem Soc ; 141(5): 2069-2079, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30616341

RESUMO

Cubic phase CsPbI3 quantum dots (α-CsPbI3 QDs) as a newly emerging type of semiconducting QDs hold tremendous promise for fundamental research and optoelectronic device applications. However, stable and sub-5 nm-sized α-CsPbI3 QDs have rarely been demonstrated so far due to their highly labile ionic structure and low phase stability. Here, we report a novel strontium-substitution along with iodide passivation strategy to stabilize the cubic phase of CsPbI3, achieving the facile synthesis of α-CsPbI3 QDs with a series of controllable sizes down to sub-5 nm. We demonstrate that the incorporation of strontium ions can significantly increase the formation energies of α-CsPbI3 QDs and hence reduce the structure distortion to stabilize the cubic phase at the few-nanometer size. The size ranging from 15 down to sub-5 nm of as-prepared stable α-CsPbI3 QDs allowed us to investigate their unique size-dependent optical properties. Strikingly, the few-nanometer-sized α-CsPbI3 QDs turned out to retain high photoluminescence and highly close packing in solid state thin films, and the fabricated red light emitting diodes exhibited high brightness (1250 cd m-2 at 9.2 V) and good operational stability (L50 > 2 h driven by 6 V). The developed cation-substitution strategy will provide an alternative method to prepare uniform and finely size-controlled colloidal lead halide perovskite QDs for various optoelectronic applications.

6.
Nanoscale ; 10(41): 19262-19271, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30324957

RESUMO

Although the efficiency of metal halide perovskite light emitting diodes (PeLEDs) has been improved to an attractive level, the poor stability of perovskite emitting layers is a major concern for the application of PeLEDs. Herein, we report a facile ligand-assisted precipitation synthesis of stable dual-phase CsPbBr3-CsPb2Br5 nanocrystals (NCs) for improving the stability of PeLEDs. In our synthetic process, the bromide-rich circumstance is beneficial to generate high quality dual-phase perovskite NCs with PLQY as high as 92% and a narrow emission linewidth (19 nm). More importantly, as-synthesized dual phase perovskite NCs exhibit extremely high thermal stability in heating tests in air with a considerable humidity of 30%-55% in comparison with previously reported single phase CsPbBr3 NCs. The aforementioned advantages of our synthesized dual-phase CsPbBr3-CsPb2Br5 NCs allow for the fabrication of light emitting layers of PeLEDs under ambient conditions. The fabricated green PeLED based on CsPbBr3-CsPb2Br5 NCs shows a low turn-on voltage of 2.5 V and a high brightness of 8383 cd m-2 at 8 V. Owing to the high stability of dual-phase CsPbBr3-CsPb2Br5 NCs, the fabricated PeLED also exhibits better operational stability in comparison with those PeLEDs based on single phase CsPbBr3 NCs. Our work presents a new route to fabricate stable perovskite light-emitting diodes using room temperature precipitated dual-phase CsPbBr3-CsPb2Br5 NCs as emitting layer materials.

7.
Angew Chem Int Ed Engl ; 57(24): 7106-7110, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29722463

RESUMO

Aggregation-induced emission (AIE) is an attractive phenomenon in which materials display strong luminescence in the aggregated solid states rather than in the conventional dissolved molecular states. However, highly luminescent inks based on AIE are hard to be obtained because of the difficulty in finely controlling the crystallinity of AIE materials at nanoscale. Herein, we report the preparation of highly luminescent inks via oil-in-water microemulsion induced aggregation of Cu-I hybrid clusters based on the highly soluble copper iodide-tris(3-methylphenyl)phosphine (Cu4 I4 (P-(m-Tol)3 )4 ) hybrid. Furthermore, we can synthesize a series of AIE inks with different light-emission colors to cover the whole visible spectrum range via a facile ligand exchange processes. The assemblies of Cu-I hybrid clusters with AIE characteristics will pave the way to fabricate low-cost highly luminescent inks.

8.
J Am Chem Soc ; 140(10): 3626-3634, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29341604

RESUMO

Inorganic perovskite CsPbBr3 nanocrystals (NCs) are emerging, highly attractive light emitters with high color purity and good thermal stability for light-emitting diodes (LEDs). Their high photo/electroluminescence efficiencies are very important for fabricating efficient LEDs. Here, we propose a novel strategy to enhance the photo/electroluminescence efficiency of CsPbBr3 NCs through doping of heterovalent Ce3+ ions via a facile hot-injection method. The Ce3+ cation was chosen as the dopant for CsPbBr3 NCs by virtue of its similar ion radius and formation of higher energy level of conduction band with bromine in comparison with the Pb2+ cation to maintain the integrity of perovskite structure without introducing additional trap states. It was found that by increasing the doping amount of Ce3+ in CsPbBr3 NCs to 2.88% (atomic percentage of Ce compared to Pb) the photoluminescence quantum yield (PLQY) of CsPbBr3 NCs reached up to 89%, a factor of 2 increase in comparison with the native, undoped ones. The ultrafast transient absorption and time-resolved photoluminescence (PL) spectroscopy revealed that Ce3+-doping can significantly modulate the PL kinetics to enhance the PL efficiency of doped CsPbBr3 NCs. As a result, the LED device fabricated by adopting Ce3+-doped CsPbBr3 NCs as the emitting layers exhibited a pronounced improvement of electroluminescence with external quantum efficiency (EQE) from 1.6 to 4.4% via Ce3+-doping.

9.
J Colloid Interface Sci ; 440: 60-7, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25460690

RESUMO

Three-dimensional feather like bayerite/boehmite nanocomposites were synthesized by a facile one-pot hydrothermal method. The obtained nanocomposites were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. The removal properties toward fluoride were investigated, including adsorption kinetics, adsorption isotherm, and influences of pH and coexisting anions. The maximal adsorption capacity was 56.80 mg g(-1) at pH 7.0, which is favorable compared to those reported in the literature using other adsorbents. The coexisting of sulfate and bicarbonate inhibited the fluoride removal especially at high concentrations. Furthermore, the removal mechanism was revealed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results suggest that both of the surface hydroxyl groups and the nitrate anions were participated in the ion-exchange process.


Assuntos
Hidróxido de Alumínio/química , Óxido de Alumínio/química , Fluoretos/isolamento & purificação , Nanocompostos , Nitratos/química , Propriedades de Superfície , Ânions , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...