Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(4): 104590, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889585

RESUMO

Thymine DNA glycosylase (TDG) is a multifaceted enzyme involved in several critical biological pathways, including transcriptional activation, DNA demethylation, and DNA repair. Recent studies have established regulatory relationships between TDG and RNA, but the molecular interactions underlying these relationships are poorly understood. Herein, we now demonstrate that TDG binds directly to RNA with nanomolar affinity. Using synthetic oligonucleotides of defined length and sequence, we show that TDG has a strong preference for binding G-rich sequences in single-stranded RNA but binds weakly to single-stranded DNA and duplex RNA. TDG also binds tightly to endogenous RNA sequences. Studies with truncated proteins indicate that TDG binds RNA primarily through its structured catalytic domain and that its disordered C-terminal domain plays a key role in regulating TDG's affinity and selectivity for RNA. Finally, we show that RNA competes with DNA for binding to TDG, resulting in the inhibition of TDG-mediated excision in the presence of RNA. Together, this work provides support for and insights into a mechanism wherein TDG-mediated processes (e.g., DNA demethylation) are regulated through the direct interactions of TDG with RNA.


Assuntos
Timina DNA Glicosilase , Timina DNA Glicosilase/genética , Timina DNA Glicosilase/metabolismo , Reparo do DNA , DNA/metabolismo , RNA , Proteínas de Ligação a RNA/metabolismo , Timina
2.
Signal Transduct Target Ther ; 7(1): 94, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322018

RESUMO

To date, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has determined 399,600,607 cases and 5,757,562 deaths worldwide. COVID-19 is a serious threat to human health globally. The World Health Organization (WHO) has declared COVID-19 pandemic a major public health emergency. Vaccination is the most effective and economical intervention for controlling the spread of epidemics, and consequently saving lives and protecting the health of the population. Various techniques have been employed in the development of COVID-19 vaccines. Among these, the COVID-19 messenger RNA (mRNA) vaccine has been drawing increasing attention owing to its great application prospects and advantages, which include short development cycle, easy industrialization, simple production process, flexibility to respond to new variants, and the capacity to induce better immune response. This review summarizes current knowledge on the structural characteristics, antigen design strategies, delivery systems, industrialization potential, quality control, latest clinical trials and real-world data of COVID-19 mRNA vaccines as well as mRNA technology. Current challenges and future directions in the development of preventive mRNA vaccines for major infectious diseases are also discussed.


Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Humanos , Pandemias/prevenção & controle , RNA Mensageiro/genética , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...