Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biol Int ; 45(8): 1685-1697, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33811714

RESUMO

Electromagnetic fields (EMFs) have emerged as a versatile means for osteoporosis treatment and prevention. However, its optimal application parameters are still elusive. Here, we optimized the frequency parameter first by cell culture screening and then by animal experiment validation. Osteoblasts isolated from newborn rats (ROBs) were exposed 90 min/day to 1.8 mT SEMFs at different frequencies (ranging from 10 to 100 Hz, interval of 10 Hz). SEMFs of 1.8 mT inhibited ROB proliferation at 30, 40, 50, 60 Hz, but increased proliferation at 10, 70, 80 Hz. SEMFs of 10, 50, and 70 Hz promoted ROB osteogenic differentiation and mineralization as shown by alkaline phosphatase (ALP) activity, calcium content, and osteogenesis-related molecule expression analyses, with 50 Hz showing greater effects than 10 and 70 Hz. Treatment of young rats with 1.8 mT SEMFs at 10, 50, or 100 Hz for 2 months significantly increased whole-body bone mineral density (BMD) and femur microarchitecture, with the 50 Hz group showing the greatest effect. Furthermore, 1.8 mT SEMFs extended primary cilia lengths of ROBs and increased protein kinase A (PKA) activation also in a frequency-dependent manner, again with 50 Hz SEMFs showing the greatest effect. Pretreatment of ROBs with the PKA inhibitor KT5720 abolished the effects of SEMFs to increase primary cilia length and promote osteogenic differentiation/mineralization. These results indicate that 1.8 mT SEMFs have a frequency window effect in promoting osteogenic differentiation/mineralization in ROBs and bone formation in growing rats, which involve osteoblast primary cilia length extension and PKA activation.


Assuntos
Diferenciação Celular/fisiologia , Cílios/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Campos Eletromagnéticos , Osteoblastos/fisiologia , Osteogênese/fisiologia , Animais , Animais Recém-Nascidos , Capilares/citologia , Capilares/fisiologia , Células Cultivadas , Ativação Enzimática/fisiologia , Feminino , Ratos , Ratos Wistar , Crânio/citologia , Crânio/fisiologia
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 41(1): 11-20, 2019 Feb 28.
Artigo em Chinês | MEDLINE | ID: mdl-30837037

RESUMO

Objective To compare the effects of 50-Hz 0.6-mT low-frequency pulsed electromagnetic fields(PEMFs) and 50-Hz 1.8-mT sinusoidal alternating electromagnetic fields(SEMFs) in preventing bone loss in tail-suspended rats,with an attempt to improve the prevention and treatment of bone loss caused by weightlessness.Methods Tail-suspension rat models were used to simulate microgravity on the ground. Forty rats were randomly divided into four groups[control group,hindlimb-suspended(HLS) group,HLS+PEMFs group,and HLS+SEMFs group],with 10 rats in each group. In the PEMFs treatment group and SEMFs treatment group,the intervention was 90 min per day. Rats were sacrificed after four weeks. Bone mineral density(BMD) of femur and vertebra was measured by dual-energy X-ray absorptiometry and biomechanical strength by AG-IS biomechanical instrument. Serum osteocalcin(OC),tartrate-resistant acid phosphatase 5b(Tracp 5b),parathyroid hormone(PTH),and cyclic adenosine monophosphate(cAMP) were detected by ELISA. The microstructure of bone tissue was observed by Micro-CT and HE staining.Results The BMD of the femur(P=0.000) and vertebrae(P=0.001) in the HLS group was significantly lower than in the control group;the BMD of the femurs(P=0.001) and vertebrae(P=0.039) in the HLS+PEMFs group was significantly higher than in the HLS group;the BMD of the femurs in the HLS+SEMFs group was significantly higher than in the HLS group(P=0.003),but the BMD of the vertebrae showed no significant difference(P=0.130). There was no significant difference in the BMD of the femur(P=0.818) and vertebrae(P=0.614) between the HLS+PEMFs group and the HLS+SEMFs group. The maximum load(P=0.000,P=0.009) and elastic modulus(P=0.015,P=0.009) of the femurs and vertebrae in the HLS group were significantly lower than those in the control group;the maximum load of the femur(P=0.038) and vertebrae(P=0.087) in the HLS+PEMFs group was significantly higher than that in the HLS group,but the elastic modulus was not significantly different from that in the HLS group(P=0.324,P=0.091). The maximum load(P=0.190,P=0.222) and elastic modulus(P=0.512,P=0.437) of femurs and vertebrae in the HLS+SEMFs group were not significantly different from those in the HLS group. There were no significant differences in the maximum load and elastic modulus of femurs(P=0.585,P=0.948) and vertebrae(P=0.668,P=0.349) between the HLS+PEMFs group and the HLS+SEMFs group. The serum OC level in the HLS group was significantly lower than that in the control group(P=0.000),and the OC level in HLS+PEMFs group(P=0.000) and HLS+SEMFs group(P=0.006) were significantly higher than that in the HLS group. The serum Tracp 5b concentration in the HLS group was significantly higher than that in the control group(P=0.011). There was no significant difference between the HLS+PEMFs group(P=0.459) and the HLS+SEMFs group(P=0.469) compared with the control group.Serum Tracp 5b concentrations in the HLS+PEMFs group(P=0.056) and the HLS+SEMFs group(P=0.054) were not significantly different from those in the HLS group. The PTH(P=0.000) and cAMP concentrations(P=0.000) in the HLS group were significantly lower than those in the control group. The PTH(P=0.000,P=0.000) and cAMP concentrations(P=0.000,P=0.000) in the HLS+PEMFs group and the HLS+SEMFs group were significantly higher than in the HLS group. The femoral cancellous bone of the HLS group was very sparse and small compared with the control group. The density and volume of the cancellous bone were similar among the control group,HLS+PEMFs group,and HLS+SEMFs group. Compared with the control group,the HLS group had lower BMD(P=0.000),bone volume (BV)/tissue volume(TV)(P=0.000),number of trabecular bone (Tb.N)(P=0.000),and trabecular thickness(Tb.Th)(P=0.000) and higher trabecular bone dispersion(Tb.Sp)(P=0.000) and bone surface area(BS)/BV(P=0.000). Compared with the HLS group,the HLS+PEMFs group and the HLS+SEMFs group had significantly lower Tb.Sp(P=0.000,P=0.000) and BS/BV(P=0.000,P=0.000) and significantly increased BMD(P=0.000,P=0.000),BV/TV(P=0.001,P=0.004),Tb.Th(P=0.000,P=0.001),and Tb.N(P=0.000,P=0.001). The trabecular thickness significantly differed between the HLS+PEMFs group and the HLS+SEMFs group(P=0.024). The HLS group(P=0.000),HLS+PEMFs group(P=0.000),and HLS+SEMFs group(P=0.000) had the significantly lower osteoblast density on the trabecular bone surface than the control group;however,it was significantly higher in the HLS+SEMFs group(P=0.000) and the HLS+PEMFs group(P=0.000) than in the HLS group. The HLS group had significantly lower density of osteoblasts in the endothelium than the control group(P=0.000);however,the density of osteoblasts was significantly higher in HLS+PEMFs group(P=0.000) and HLS+SEMFs group(P=0.000) than HLS group and was significantly higher in HLS+PEMFs group than in HLS+SEMFs group(P=0.041). Compared with the control group,a large number of fatty cavities were produced in the bone marrow cavity in the HLS group,but the fat globules remarkably decreased in the treatment groups,showing no significant difference from the control group. The number of adipose cells per mm 2 bone marrow in the HLS group was 4 times that of the control group(P=0.000);it was significantly smaller in the HLS+PEMFs group(P=0.000) and HLS+SEMFs group(P=0.000) than in the HLS group,whereas the difference between the HLS+PEMFs group and the HLS+SEMFs group was not statistically significant(P=0.086). Conclusions 50-Hz 0.6-mT PEMFs and 50-Hz 1.8-mT SEMFs can effectively increase bone mineral density and biomechanical values in tail-suspended rats,increase the concentration of bone formation markers in rat blood,activate the cAMP pathway by affecting PTH levels,and thus further increase the content of osteoblasts to prevent the deterioration of bone micro-structure. In particular,PEMFs can prevent the reduction of bone mineral density and maximum load value by about 50% and increase the bone mass of tail-suspended rats by promoting bone formation.


Assuntos
Campos Eletromagnéticos , Ausência de Peso , Absorciometria de Fóton , Animais , Densidade Óssea , Fêmur , Ratos , Ratos Sprague-Dawley
3.
J Bone Miner Res ; 34(7): 1336-1351, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30779853

RESUMO

Extremely low-frequency electromagnetic fields have been considered a potential candidate for the prevention and treatment of osteoporosis; however, their action mechanism and optimal magnetic flux density (intensity) parameter are still elusive. The present study found that 50-Hz sinusoidal electromagnetic fields (SEMFs) at 1.8 mT increased the peak bone mass of young rats by increasing bone formation. Gene array expression studies with femoral bone samples showed that SEMFs increased the expression levels of collagen-1α1 and Wnt10b, a critical ligand of the osteogenic Wnt/ß-catenin pathway. Consistently, SEMFs promoted osteogenic differentiation and maturation of rat calvarial osteoblasts (ROBs) in vitro through activating the Wnt10b/ß-catenin pathway. This osteogenesis-promoting effect of SEMFs via Wnt10b/ß-catenin signaling was found to depend on the functional integrity of primary cilia in osteoblasts. When the primary cilia were abrogated by small interfering RNA (siRNA) targeting IFT88, the ability of SEMFs to promote the osteogenic differentiation of ROBs through activating Wnt10b/ß-catenin signaling was blocked. Although the knockdown of Wnt10b expression with RNA interference had no effect on primary cilia, it significantly suppressed the promoting effect of SEMFs on osteoblastic differentiation/maturation. Wnt10b was normally localized at the bases of primary cilia, but it disappeared (or was released) from the cilia upon SEMF treatment. Interestingly, primary cilia were elongated to different degrees by different intensities of 50-Hz SEMFs, with the window effect observed at 1.8 mT, and the expression level of Wnt10b increased in accord with the lengths of primary cilia. These results indicate that 50-Hz 1.8-mT SEMFs increase the peak bone mass of growing rats by promoting osteogenic differentiation/maturation of osteoblasts, which is mediated, at least in part, by Wnt10b at the primary cilia and the subsequent activation of Wnt/ß-catenin signaling. © 2019 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos/anatomia & histologia , Cílios/metabolismo , Campos Eletromagnéticos , Osteoblastos/metabolismo , Proteínas Wnt/metabolismo , Animais , Animais Recém-Nascidos , Calcificação Fisiológica , Diferenciação Celular , Células Cultivadas , Feminino , Fêmur/metabolismo , Regulação da Expressão Gênica , Tamanho do Órgão , Osteogênese/genética , Ratos Sprague-Dawley , Transdução de Sinais , beta Catenina/metabolismo
4.
Bioelectromagnetics ; 39(8): 569-584, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30350869

RESUMO

Microgravity is one of the main threats to the health of astronauts. Pulsed electromagnetic fields (PEMFs) have been considered as one of the potential countermeasures for bone loss induced by space flight. However, the optimal therapeutic parameters of PEMFs have not been obtained and the action mechanism is still largely unknown. In this study, a set of optimal therapeutic parameters for PEMFs (50 Hz, 0.6 mT 50% duty cycle and 90 min/day) selected based on high-throughput screening with cultured osteoblasts was used to prevent bone loss in rats induced by hindlimb suspension, a commonly accepted animal model to simulate the space environment. It was found that hindlimb suspension for 4 weeks led to significant decreases in femoral and vertebral bone mineral density (BMD) and their maximal loads, severe deterioration in bone micro-structure, and decreases in levels of bone formation markers and increases in bone resorption markers. PEMF treatment prevented about 50% of the decreased BMD and maximal loads, preserved the microstructure of cancellous bone and thickness of cortical bone, and inhibited decreases in bone formation markers. Histological analyses revealed that PEMFs significantly alleviated the reduction in osteoblast number and inhibited the increase in adipocyte number in the bone marrow. PEMFs also blocked decreases in serum levels of parathyroid hormone and its downstream signal molecule cAMP, and maintained the phosphorylation levels of protein kinase A (PKA) and cAMP response element-binding protein (CREB). The expression level of soluble adenylyl cyclases (sAC) was also maintained. It therefore can be concluded that PEMFs partially prevented the bone loss induced by weightless environment by maintaining bone formation through signaling of the sAC/cAMP/PKA/CREB pathway. Bioelectromagnetics. 39:569-584, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Adenilil Ciclases/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Campos Eletromagnéticos , Membro Posterior/fisiologia , Osteogênese/efeitos da radiação , Adipócitos/citologia , Adipócitos/efeitos da radiação , Animais , Fenômenos Biomecânicos/efeitos da radiação , Peso Corporal/efeitos da radiação , Densidade Óssea/efeitos da radiação , Reabsorção Óssea/metabolismo , Reabsorção Óssea/prevenção & controle , Feminino , Fêmur/citologia , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Fêmur/efeitos da radiação , Membro Posterior/efeitos da radiação , Osteoblastos/citologia , Osteoblastos/efeitos da radiação , Ratos , Ratos Wistar , Transdução de Sinais/efeitos da radiação , Coluna Vertebral/citologia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/fisiologia , Coluna Vertebral/efeitos da radiação , Suspensões , Microtomografia por Raio-X
5.
Nat Prod Res ; 32(8): 880-884, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28805453

RESUMO

One new compound, Colletotrichine A (1), was produced by the fungal Colletotrichum gloeosporioides GT-7. The structure was established by 1D and 2D NMR spectra. Monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitory activity of 1 was also evaluated. Compound 1 showed AChE-inhibiting activity with IC50 value of 28 µg/mL.


Assuntos
Inibidores da Colinesterase/química , Colletotrichum/química , Inibidores da Monoaminoxidase/química , Sesquiterpenos/química , Uncaria/microbiologia , Inibidores da Colinesterase/farmacologia , Endófitos/química , Concentração Inibidora 50 , Inibidores da Monoaminoxidase/farmacologia , Sesquiterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...