Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 680: 115318, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37696464

RESUMO

Normal liquefaction of semen is one of the key steps to ensure the smooth progress of fertilization, and glycosylation has been reported to be involved in the whole process of fertilization. Till now, it is still unclear whether and how glycosylation changes during the liquefaction process of semen. In this study, by performing a glycoproteomic analysis of human semen with the liquefaction process (liquefaction time of semen: 0 min vs 30 min) using our recently developed StrucGP software combined with the Tandem Mass Tags (TMT) based quantification, we identified 25 intact glycopeptides (IGPs) from 10 glycoproteins in semen that were significantly changed during liquefaction, including 23 up-regulated and two down-regulated. Among the 23 up-regulated glycopeptides, half were modified with sialylated glycans, suggesting that sialylated glycans may play a key role in the semen liquefaction process. The data provide an invaluable resource for further studies on the role of glycosylation during semen liquefaction.


Assuntos
Líquidos Corporais , Sêmen , Humanos , Glicopeptídeos , Glicosilação , Polissacarídeos
2.
J Proteome Res ; 22(9): 2803-2813, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549151

RESUMO

Aging-related salivary gland degeneration usually causes poor oral health. Periductal fibrosis frequently occurs in the submandibular gland of the elderly. Transforming growth factor ß1 (TGF-ß1) is the primary driving factor for fibrosis, which exhibits an increase in the fibrotic submandibular gland tissue. This study aimed to investigate the effects of TGF-ß1 on the human submandibular gland (HSG) cell secretory function and its influences on aquaporin 5 (AQP5) expressions and distribution. We found that TGF-ß1 reduces the protein secretion amount of HSG and leads to the abundance alteration of 151 secretory proteins. Data are available via ProteomeXchange with the identifier PXD043185. The majority of HSG secretory proteins (84.11%) could be matched to the human saliva proteome. Meanwhile, TGF-ß1 enhances the expression of COL4A2, COL5A1, COL7A1, COL1A1, COL2A1, and α-SMA, hinting that TGF-ß1 possesses the potential to drive HSG fibrosis-related events. Besides, TGF-ß1 also attenuates the AQP5 expression and its membrane distribution in HSGs. The percentage for TGF-ß1-induced AQP5 reduction (52.28%) is much greater than that of the TGF-ß1-induced secretory protein concentration reduction (16.53%). Taken together, we concluded that TGF-ß1 triggers salivary hypofunction via attenuating protein secretion and AQP5 expression in HSGs, which may be associated with TGF-ß1-driven fibrosis events in HSGs.


Assuntos
Aquaporina 5 , Glândula Submandibular , Fator de Crescimento Transformador beta1 , Humanos , Aquaporina 5/genética , Aquaporina 5/metabolismo , Colágeno Tipo VII/metabolismo , Saliva/metabolismo , Glândula Submandibular/citologia , Glândula Submandibular/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
3.
Carbohydr Res ; 531: 108894, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421876

RESUMO

Bisecting N-glycan is known to be a metastasis suppressor and plays a regulatory role in the biosynthesis of N-glycans. Previous studies have shown that bisecting N-glycans are capable of modulating both the branching and terminal modifications of glycans. However, these effects have been investigated mainly by glycomic approaches and it remains unclear how they alter when glycans are attached to different glycosites of proteins. Here, we systematically investigated the regulatory roles of bisecting N-glycans in human HK-2 cells using StrucGP, a strategy we developed for structural interpretation of site-specific N-glycans on glycoproteins. The glycoproteomics analysis showed that most of bisecting N-glycans are complex type and often occur in company with core fucosylation. With the overexpression and knockdown of MGAT3, the only enzyme responsible for bisecting N-glycan synthesis, we found that bisecting N-glycans can impact the biosynthesis of N-glycans from multiple aspects, including glycan types, branching, sialylation, fucosylation (different effects for core and terminal fucosylation) as well as the presence of terminal N-acetylglucosamine. Furthermore, gene ontology analysis suggested that most proteins with bisecting N-glycans located in the extracellular region or membrane, where they function mostly in cell adhesion, extracellular matrix regulation and cell signaling. Finally, we showed that overexpression of bisecting N-glycans had a broad impact on the protein expressions of HK-2 cells, involving multiple biological processes. Taken together, our work systematically demonstrated the expression profiles of bisecting N-glycans, and their regulatory effects on the biosynthesis of N-glycans and protein expressions, which provide valuable information for the functional elucidation of bisecting N-glycans.


Assuntos
Glicoproteínas , Polissacarídeos , Humanos , Glicosilação , Glicoproteínas/química , Polissacarídeos/química
4.
Arthritis Res Ther ; 25(1): 102, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308935

RESUMO

BACKGROUND: Osteoarthritis (OA) is the most common form of arthritis, affecting millions of aging people. Investigation of abnormal glycosylation is essential for the understanding of pathological mechanisms of OA. METHODS: The total protein was isolated from OA (n = 13) and control (n = 11) cartilages. Subsequently, glycosylation alterations of glycoproteins in OA cartilage were investigated by lectin microarrays and intact glycopeptides analysis. Finally, the expression of glycosyltransferases involved in the synthesis of altered glycosylation was assessed by qPCR and GEO database. RESULTS: Our findings revealed that several glycopatterns, such as α-1,3/6 fucosylation and high-mannose type of N-glycans were altered in OA cartilages. Notably, over 27% of identified glycopeptides (109 glycopeptides derived from 47 glycoproteins mainly located in the extracellular region) disappeared or decreased in OA cartilages, which is related to the cartilage matrix degradation. Interestingly, the microheterogeneity of N-glycans on fibronectin and aggrecan core protein was observed in OA cartilage. Our results combined with GEO data indicated that the pro-inflammatory cytokines altered the expression of glycosyltransferases (ALG3, ALG5, MGAT4C, and MGAT5) which may contribute to the alterations in glycosylation. CONCLUSION: Our study revealed the abnormal glycopatterns and heterogeneities of site-specific glycosylation associated with OA. To our knowledge, it is the first time that the heterogeneity of site-specific N-glycans was reported in OA cartilage. The results of gene expression analysis suggested that the expression of glycosyltransferases was impacted by pro-inflammatory cytokines, which may facilitate the degradation of protein and accelerate the process of OA. Our findings provide valuable information for the understanding of molecular mechanisms in the pathogenesis of OA.


Assuntos
Cartilagem , Glicômica , Glicosilação , Osteoartrite , Humanos , Glicômica/métodos , Glicoproteínas , Cartilagem/metabolismo , Citocinas
5.
Anal Chem ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36633944

RESUMO

O-Acetylation is a common modification of sialic acid, playing a significant role in glycoprotein stability, immune response, and cell development. Due to the lack of efficient methods for direct analysis of O-acetylated sialoglycopeptides (O-AcSGPs), the majority of identified O-acetylated sialic acids (O-AcSia) until now had no glycosite/glycoprotein information. Herein, we introduced a new workflow for precise interpretation of O-AcSGPs with probability estimation by recognizing the characteristic B and Y ions of O-AcSias. With further optimization of mass spectrometry parameters, the method allowed us to identify a total of 171 unique O-AcSGPs in mouse serum. Although the majority of these O-AcSGPs were at a relatively low abundance compared with their non-O-acetylated states, they were mainly involved in peptidase/endopeptidase inhibitor activities. The method paves the way for large-scale structural and functional analyses of site-specific O-AcSias in various complex samples as well as further identification of many other similar chemical modifications on glycoproteins.

6.
Front Med ; 17(2): 304-316, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36580234

RESUMO

The structure of N-glycans on specific proteins can regulate innate and adaptive immunity via sensing environmental signals. Meanwhile, the structural diversity of N-glycans poses analytical challenges that limit the exploration of specific glycosylation functions. In this work, we used THP-1-derived macrophages as examples to show the vast potential of a N-glycan structural interpretation tool StrucGP in N-glycoproteomic analysis. The intact glycopeptides of macrophages were enriched and analyzed using mass spectrometry (MS)-based glycoproteomic approaches, followed by the large-scale mapping of site-specific glycan structures via StrucGP. Results revealed that bisected GlcNAc, core fucosylated, and sialylated glycans (e.g., HexNAc4Hex5Fuc1Neu5Ac1, N4H5F1S1) were increased in M1 and M2 macrophages, especially in the latter. The findings indicated that these structures may be closely related to macrophage polarization. In addition, a high level of glycosylated PD-L1 was observed in M1 macrophages, and the LacNAc moiety was detected at Asn-192 and Asn-200 of PD-L1, and Asn-200 contained Lewis epitopes. The precision structural interpretation of site-specific glycans and subsequent intervention of target glycoproteins and related glycosyltransferases are of great value for the development of new diagnostic and therapeutic approaches for different diseases.


Assuntos
Antígeno B7-H1 , Polissacarídeos , Humanos , Glicosilação , Polissacarídeos/química , Polissacarídeos/metabolismo
7.
Anal Chem ; 94(50): 17349-17353, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36484784

RESUMO

Accurate identification of core fucosylation on N-glycopeptides remains challenging due to fucose migration during mass spectrometry analysis. Here, we introduce a simple and straightforward method for core-fucosylated glycopeptide recognition based on the relative intensities of Y1+Fuc ions compared with their corresponding Y1 ions (labeled as Y1+Fuc/Y1 or simply Y1F/Y1 ratio > 0.1) in low-energy HCD-based spectra. The method was first developed by systematically evaluating the influence of fucose migration on the Y1F ion from antenna fucoses based on the distribution of the Y1F/Y1 ratios in the MS/MS spectra of antenna-fucosylated glycopeptides from Fut8-/- mouse brain. The feasibility of the method was then confirmed by using two standard glycoproteins, comparison with glycopeptides in Fut8+/+ mouse brain with/without in silico core-fucosylation removal, and Y1F/Y1 ratio alterations under a lower HCD energy. This method will be applicable to the manual interpretation and software-based high-throughput analysis of core-fucosylated glycopeptides.


Assuntos
Glicopeptídeos , Espectrometria de Massas em Tandem , Animais , Camundongos , Glicopeptídeos/análise , Espectrometria de Massas em Tandem/métodos , Fucose/química , Glicosilação , Glicoproteínas/química
8.
Anal Bioanal Chem ; 414(29-30): 8245-8253, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181511

RESUMO

Selecting proper and efficient glycopeptide enrichment approaches are essential for mass spectrometry-based glycoproteomics since glycopeptides are usually with microheterogeneity and low abundance in most biological samples. Herein, we introduced a cotton hydrophilic interaction liquid chromatography (HILIC) approach for large-scale glycopeptide enrichment with 80% acetonitrile/1% trifluoroacetic acid as the optimal sample loading buffer. The comparison of cotton HILIC with Venusil HILIC and mixed anion-exchange (MAX) approaches indicated that cotton HILIC was superior in overall glycopeptide enrichment, whereas Venusil HILIC preferred in complex glycan structures and MAX performed better with high mannose glycans. Exploration of capacity and recovery rate of cotton HILIC illustrated that 5mg cotton packed in a 200µL tip achieved a reasonable glycopeptide enrichment performance (~6% recovery) from ~0.5mg peptides. In conclusion, cotton HILIC can be used as an optional glycopeptide enrichment approach in glycosylation analysis with its specific merit.


Assuntos
Glicopeptídeos , Polissacarídeos , Glicopeptídeos/química , Cromatografia Líquida/métodos , Glicosilação , Interações Hidrofóbicas e Hidrofílicas
9.
Anal Chem ; 94(36): 12274-12279, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36036581

RESUMO

The spike (S) protein plays a key role in COVID-19 (SARS-CoV-2) infection and host-cell entry. Previous studies have systematically analyzed site-specific glycan compositions as well as many important structural motifs of the S protein. Here, we further provide structural-clear N-glycosylation of the S protein at a site-specific level by using our recently developed structural- and site-specific N-glycoproteomics sequencing algorithm, StrucGP. In addition to the common N-glycans as detected in previous studies, many uncommon glycosylation structures such as LacdiNAc structures, Lewis structures, Mannose 6-phosphate (M6P) residues, and bisected core structures were unambiguously mapped at a total of 20 glycosites in the S protein trimer and protomer. These data further support the glycosylation structural-functional investigations of the COVID-19 virus spike.


Assuntos
COVID-19 , SARS-CoV-2 , Glicosilação , Humanos , Polissacarídeos/química
10.
Anal Methods ; 14(30): 2913-2919, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35877071

RESUMO

Sialic acid, a common terminal monosaccharide on many glycoconjugates, plays essential roles in many biological processes such as immune responses, pathogen recognition, and cancer development. For various purposes, sialic acids may need to be removed from glycopeptides or glycans, mainly using enzymatical or chemical approaches. In this study, we found that most commonly used chemical methods couldn't completely remove sialic acids from glycopeptides. Although the de-sialylation efficiency could be further enhanced by increasing the treatment time or acid concentration, the undesirable side reactions on the peptide portion would decrease glycopeptide identification. By adding the deamidation on carbamidomethyl-cysteine (C), asparagine (N), and glutamine (Q) residues as a variable modification during database search, most of the unidentified spectra could be recovered. This optional acid-treatment and database search method for the complete removal of sialic acids without losing much spectral identification should be quite useful for many glycomic and glycoproteomic studies.


Assuntos
Glicopeptídeos , Ácido N-Acetilneuramínico , Glicopeptídeos/química , Polissacarídeos , Ácidos Siálicos/química
11.
J Proteome Res ; 21(7): 1664-1674, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35616904

RESUMO

N-Linked glycoproteins are rich in seminal plasma, playing various essential roles in supporting sperm function and the fertilization process. However, the detailed information on these glycoproteins, particularly site-specific glycan structures, is still limited. In this study, a precision site-specific N-glycoproteome map of human seminal plasma was established by employing the site-specific glycoproteomic approach and a recently developed glycan structure interpretation software, StrucGP. A total of 9567 unique glycopeptides identified in human seminal plasma were composed of 773 N-linked glycan structures and 1019 N-glycosites from 620 glycoproteins. These glycans were comprised of four types of core structures and 13 branch structures. The majority of identified glycoproteins functioned in response to stimulus and immunity. As we reported in human spermatozoa, heavy fucosylation (fucose residues ≥6 per glycan) was also detected on seminal plasma glycoproteins such as clusterin and galectin-3-binding protein, which were involved in the immune response of biological processes and reactome pathways. Comparison of site-specific glycans between seminal plasma and spermatozoa revealed more complicated glycan structures in seminal plasma than in spermatozoa, even on their shared glycoproteins. These present data will be greatly beneficial for the in-depth structural and functional study of glycosylation in the male reproduction system.


Assuntos
Polissacarídeos , Sêmen , Glicopeptídeos/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Masculino , Polissacarídeos/química , Sêmen/metabolismo
12.
Anal Bioanal Chem ; 414(11): 3311-3317, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35229171

RESUMO

In glycomic and glycoproteomic studies, solutions containing diluted organic acids such as formic acid (FA) have been widely used for dissolving intact glycopeptide and glycan samples prior to mass spectrometry analysis. Here, we show that an undesirable + 28 Da modification occurred in a time-dependent manner when the glycan and glycopeptide samples were stored in FA solution at - 20 °C. We confirmed that this unexpected modification was caused by formylation between the hydroxyl groups of glycans and FA with a relatively low reaction rate. As this incomplete modification affected the glycan and glycopeptide identification and quantification in glycomic and glycoproteomic studies, the storage at - 20 °C should be avoided once the glycan and glycopeptide samples have been dissolved in FA solution.


Assuntos
Glicômica , Glicopeptídeos , Formiatos , Glicômica/métodos , Glicopeptídeos/química , Espectrometria de Massas , Polissacarídeos/química
13.
Mol Cell Proteomics ; 21(4): 100214, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35183770

RESUMO

Spermatozoon represents a very special cell type in human body, and glycosylation plays essential roles in its whole life including spermatogenesis, maturation, capacitation, sperm-egg recognition, and fertilization. In this study, by mapping the most comprehensive N-glycoproteome of human spermatozoa using our recently developed site-specific glycoproteomic approaches, we show that spermatozoa contain a number of distinctive glycoproteins, which are mainly involved in spermatogenesis, acrosome reaction and sperm:oocyte membrane binding, and fertilization. Heavy fucosylation is observed on 14 glycoproteins mostly located at extracellular and cell surface regions in spermatozoa but not in other tissues. Sialylation and Lewis epitopes are enriched in the biological process of immune response in spermatozoa, while bisected core structures and LacdiNAc structures are highly expressed in acrosome. These data deepen our knowledge about glycosylation in spermatozoa and lay the foundation for functional study of glycosylation and glycan structures in male infertility.


Assuntos
Reação Acrossômica , Espermatozoides , Acrossomo/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Humanos , Masculino , Proteômica , Capacitação Espermática , Espermatozoides/metabolismo
14.
Mol Oncol ; 16(11): 2135-2152, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34855283

RESUMO

Primary liver cancer, mainly comprising hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), remains a major global health problem. Although ICC is clinically different from HCC, their molecular differences are still largely unclear. In this study, precision N-glycoproteomic analysis was performed on both ICC and HCC tumors as well as paracancer tissues to investigate their aberrant site-specific N-glycosylation. By using our newly developed glycoproteomic methods and novel algorithm, termed 'StrucGP', a total of 486 N-glycan structures attached on 1235 glycosites were identified from 894 glycoproteins in ICC and HCC tumors. Notably, glycans with uncommon LacdiNAc (GalNAcß1-4GlcNAc) structures were distinguished from their isomeric glycans. In addition to several bi-antennary and/or bisecting glycans that were commonly elevated in ICC and HCC, a number of LacdiNAc-containing, tri-antennary, and core-fucosylated glycans were uniquely increased in ICC. More interestingly, almost all LacdiNAc-containing N-glycopeptides were enhanced in ICC tumor but not in HCC tumor, and this phenomenon was further confirmed by lectin histochemistry and the high expression of ß1-4 GalNAc transferases in ICC at both mRNA and protein expression levels. The novel N-glycan alterations uniquely detected in ICC provide a valuable resource for future studies regarding to the discovery of ICC diagnostic biomarkers, therapeutic targets, and mechanism investigations.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Ductos Biliares Intra-Hepáticos/química , Ductos Biliares Intra-Hepáticos/metabolismo , Carcinoma Hepatocelular/genética , Humanos , Lactose/análogos & derivados , Neoplasias Hepáticas/genética , Polissacarídeos/análise
15.
Nat Methods ; 18(8): 921-929, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341581

RESUMO

Precision mapping of glycans at structural and site-specific level is still one of the most challenging tasks in the glycobiology field. Here, we describe a modularization strategy for de novo interpretation of N-glycan structures on intact glycopeptides using tandem mass spectrometry. An algorithm named StrucGP is also developed to automate the interpretation process for large-scale analysis. By dividing an N-glycan into three modules and identifying each module using distinct patterns of Y ions or a combination of distinguishable B/Y ions, the method enables determination of detailed glycan structures on thousands of glycosites in mouse brain, which comprise four types of core structure and 17 branch structures with three glycan subtypes. Owing to the database-independent glycan mapping strategy, StrucGP also facilitates the identification of rare/new glycan structures. The approach will be greatly beneficial for in-depth structural and functional study of glycoproteins in the biomedical research.


Assuntos
Algoritmos , Glicopeptídeos/análise , Glicoproteínas/análise , Polissacarídeos/análise , Animais , Glicopeptídeos/química , Glicoproteínas/química , Glicosilação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/química
16.
Front Immunol ; 12: 700009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267761

RESUMO

Macrophages can be polarized into classically activated macrophages (M1) and alternatively activated macrophages (M2) in the immune system, performing pro-inflammatory and anti-inflammatory functions, respectively. Human THP-1 and mouse RAW264.7 cell line models have been widely used in various macrophage-associated studies, while the similarities and differences in protein expression profiles between the two macrophage models are still largely unclear. In this study, the protein expression profiles of M1 and M2 phenotypes from both THP-1 and RAW264.7 macrophages were systematically investigated using mass spectrometry-based proteomics. By quantitatively analyzing more than 5,000 proteins among different types of macrophages (M0, M1 and M2) from both cell lines, we identified a list of proteins that were uniquely up-regulated in each macrophage type and further confirmed 43 proteins that were commonly up-regulated in M1 macrophages of both cell lines. These results revealed considerable divergences of each polarization type between THP-1 and RAW264.7 macrophages. Moreover, the mRNA and protein expression of CMPK2, RSAD2, DDX58, and DHX58 were strongly up-regulated in M1 macrophages for both macrophage models. These data can serve as important resources for further studies of macrophage-associated diseases in experimental pathology using human and mouse cell line models.


Assuntos
Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Humanos , Ativação de Macrófagos/fisiologia , Camundongos , Proteômica , Células RAW 264.7 , Células THP-1
17.
Theranostics ; 11(14): 6905-6921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093861

RESUMO

Rationale: Epithelial-mesenchymal transition (EMT) has been recognized as an important step toward high invasion and metastasis of many cancers including hepatocellular carcinoma (HCC), while the mechanism for EMT promotion is still ambiguous. Methods: The dynamic alterations of site-specific glycosylation during HGF/TGF-ß1-induced EMT process of three HCC cell lines were systematically investigated using precision glycoproteomic methods. The possible roles of EMT-related glycoproteins and site-specific glycans were further confirmed by various molecular biological approaches. Results: Using mass spectrometry-based glycoproteomic methods, we totally identified 2306 unique intact glycopeptides from SMMC-7721 and HepG2 cell lines, and found that core-fucosylated glycans were accounted for the largest proportion of complex N-glycans. Through quantification analysis of intact glycopeptides, we found that the majority of core-fucosylated intact glycopeptides from folate receptor α (FOLR1) were up-regulated in the three HGF-treated cell lines. Similarly, core-fucosylation of FOLR1 were up-regulated in SMMC-7721 and Hep3B cells with TGF-ß1 treatment. Using molecular approaches, we further demonstrated that FUT8 was a driver for HGF/TGF-ß1-induced EMT. The silencing of FUT8 reduced core-fucosylation and partially blocked the progress of HGF-induced EMT. Finally, we confirmed that the level of core-fucosylation on FOLR1 especially at the glycosite Asn-201 positively regulated the cellular uptake capacity of folates, and enhanced uptake of folates could promote the EMT of HCC cells. Conclusions: Based on the results, we proposed a potential pathway for HGF or TGF-ß1-induced EMT of HCC cells: HGF or TGF-ß1 treatment of HCC cells can increase the expression of glycosyltransferase FUT8 to up-regulate the core-fucosylation of N-glycans on glycoproteins including the FOLR1; core-fucosylation on FOLR1 can then enhance the folate uptake capacity to finally promote the EMT progress of HCC cells.


Assuntos
Carcinoma Hepatocelular/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptor 1 de Folato/metabolismo , Ácido Fólico/metabolismo , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patologia , Fucosiltransferases/metabolismo , Glicosilação , Células Hep G2 , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Neoplasias Hepáticas/patologia , Espectrometria de Massas , Polissacarídeos/metabolismo , Proteoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia
18.
Biology (Basel) ; 10(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806918

RESUMO

Colon cancer is one of the most lethal malignancies worldwide. Berberine has been found to exert potential anti-colon cancer activity in vitro and in vivo, although the detailed regulatory mechanism is still unclear. This study aims to identify the underlying crucial proteins and regulatory networks associated with berberine treatment of colon cancer by using proteomics as well as publicly available transcriptomics and tissue array data. Proteome profiling of berberine-treated colon cancer cells demonstrated that among 5130 identified proteins, the expression of 865 and 675 proteins were changed in berberine-treated HCT116 and DLD1 cells, respectively. Moreover, 54 differently expressed proteins that overlapped in both cell lines were mainly involved in mitochondrial protein synthesis, calcium mobilization, and metabolism of fat-soluble vitamins. Finally, GTPase ERAL1 and mitochondrial ribosomal proteins including MRPL11, 15, 30, 37, 40, and 52 were identified as hub proteins of berberine-treated colon cancer cells. These proteins have higher transcriptional and translational levels in colon tumor samples than that of colon normal samples, and were significantly down-regulated in berberine-treated colon cancer cells. Genetic dependency analysis showed that silencing the gene expression of seven hub proteins could inhibit the proliferation of colon cancer cells. This study sheds a light for elucidating the berberine-related regulatory signaling pathways in colon cancer, and suggests that ERAL1 and several mitochondrial ribosomal proteins might be promising therapeutic targets for colon cancer.

19.
Food Funct ; 11(8): 6911-6920, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32691813

RESUMO

Sialylation is involved in receptor-ligand interactions, communication between cells, and host-pathogen interactions and it is involved in the ability of glycoproteins of bovine milk to inhibit the influenza A virus (IAV). The present paper describes a simple and efficient method to isolate sialoglycoproteins from bovine milk using serotonin-magnetic particle conjugates. Then, the isolated glycoproteins were analysed by lectin blotting and LC-MS/MS. The N-glycans on isolated glycoproteins were characterized by MALDI-TOF/TOF-MS. The role of the isolated sialoglycoproteins against IAV was validated in vitro. As a result, there were 91 proteins and 17 sialylated N-glycans to be identified. The isolated proteins have ability to inhibit attachment of IAV mimics to MDCK cells. However, the role of inhibition was abolished when the sialic acid moieties were destroyed. This method could provide useful information for the large-scale production of sialoglycoproteins from bovine milk against IAV.


Assuntos
Vírus da Influenza A/efeitos dos fármacos , Leite/química , Sialoglicoproteínas/isolamento & purificação , Sialoglicoproteínas/farmacologia , Animais , Cromatografia Líquida , Glicoproteínas/farmacologia , Concentração de Íons de Hidrogênio , Vírus da Influenza A/metabolismo , Lectinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/química , Serotonina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
20.
Front Oncol ; 10: 496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426269

RESUMO

Hepatocellular carcinoma (HCC) is still one of the malignant tumors with high morbidity and mortality in China and worldwide. Although alpha-fetoprotein (AFP) as well as core fucosylated AFP-L3 have been widely used as important biomarkers for HCC diagnosis and evaluation, the AFP level shows a huge variation among HCC patient populations. In addition, the AFP level has also been proved to be associated with pathological grade, progression, and survival of HCC patients. Understanding the intrinsic heterogeneities of HCC associated with AFP levels is essential for the molecular mechanism studies of HCC with different AFP levels as well as for the potential early diagnosis and personalized treatment of HCC with AFP negative. In this study, an integrated N-glycoproteomic and proteomic analysis of low and high AFP levels of HCC tumors was performed to investigate the intrinsic heterogeneities of site-specific glycosylation associated with different AFP levels of HCC. By large-scale profiling and quantifying more than 4,700 intact N-glycopeptides from 20 HCC and 20 paired paracancer samples, we identified many commonly altered site-specific N-glycans from HCC tumors regardless of AFP levels, including decreased modifications by oligo-mannose and sialylated bi-antennary glycans, and increased modifications by bisecting glycans. By relative quantifying the intact N-glycopeptides between low and high AFP tumor groups, the great heterogeneities of site-specific N-glycans between two groups of HCC tumors were also uncovered. We found that several sialylated but not core fucosylated tri-antennary glycans were uniquely increased in low AFP level of HCC tumors, while many core fucosylated bi-antennary or hybrid glycans as well as bisecting glycans were uniquely increased in high AFP tumors. The data provide a valuable resource for future HCC studies regarding the mechanism, heterogeneities and new biomarker discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...