Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.159
Filtrar
1.
Science ; 385(6708): 554-560, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39088618

RESUMO

Wide-bandgap (WBG) absorbers in tandem configurations suffer from poor crystallinity and weak texture, which leads to severe mixed halide-cation ion migration and phase segregation during practical operation. We control WBG film growth insensitive to compositions by nucleating the 3C phase before any formation of bromine-rich aggregates and 2H phases. The resultant WBG absorbers show improved crystallinity and strong texture with suppressed nonradiative recombination and enhanced resistance to various aging stresses. Perovskite/silicon tandem solar cells achieve power conversion efficiencies of 29.4% (28.8% assessed by a third party) in a 25-square centimeter active area and 32.5% in a 1-square centimeter active area. These solar cells retained 98.3 and 90% of the original efficiency after 1301 and 800 hours of operation at 25° and 50°C, respectively, at the maximum power point (AM 1.5G illumination, full spectrum, 1-sun) when encapsulated.

2.
Shock ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39158541

RESUMO

BACKGROUND: Sepsis, a complex and life-threatening disease, poses a significant global burden affecting over 48 million individuals. Recently, it has been reported that programmed death-ligand 1 (PD-L1) expressed on neutrophils is involved in both inflammatory organ dysfunction and immunoparalysis in sepsis. However, there is a dearth of strategies to specifically target PD-L1 in neutrophils in vivo. METHODS: We successfully developed two lipid nanoparticles (LNPs) specifically targeting neutrophils by delivering PD-L1 siRNA via neutrophil-specific antibodies and polypeptides. In vivo and in vitro experiments were performed to detect lipid nanoparticles into neutrophils. A mouse cecal ligation and puncture (CLP) model was used to detect neutrophil migration, neutrophil extracellular traps (NETs) level, and organ damage. RESULT: The PD-L1 siRNA-loaded LNPs that target neutrophils suppressed inflammation, reduced the release of NETs, and inhibited T-lymphocyte apoptosis. This approach could help maintain homeostasis of both the immune and inflammatory responses during sepsis. Furthermore, the PD-L1 siRNA-loaded LNPs targeting neutrophils have the potential to ameliorate the multi-organ damage and lethality resulting from CLP. CONCLUSIONS: Taken together, our data identify a previously unknown drug delivery strategy targeting neutrophils, which represents a novel, safe, and effective approach to sepsis therapy.

3.
Angew Chem Int Ed Engl ; : e202414464, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189662

RESUMO

The preparation of polyolefins with high polar monomer contents (above 20 mol %) has long been a challenge. Half-titanocenes (Cp')[HC(Ar)N]2BOTiCl2 bearing bulky electron-donating N-heterocyclic boryloxy ligands have been designed and synthesized. The complexes (Cp*)[HC(Ar)N]2BOTiCl2 (2, Ar = 2,6-iPr2C6H3; 5, Ar = 2,4,6-Me3C6H2) supported by Cp* and the bulky boryloxy ligands have been shown to efficiently catalyze the copolymerization of ethylene with long chain α-olefins. In particular, precatalyst 5 enabled the controlled synthesis of poly(ethylene-co-9-decen-1-ol) with unprecedented high polar monomer contents up to 32.1 mol% while maintaining high catalytic activity. The structural analysis and DFT calculations disclosed that the bulky and strong electron-donating boryloxy ligands could effectively stabilize cationic active species. The mechanical studies on the hydroxyl-functionalized copolymers disclosed that they exhibited high strength and toughness because of the existence of hydrogen bonds in the polymer network.

4.
Mater Horiz ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39139143

RESUMO

Due to the success of halide perovskites in the photovoltaic field, halide perovskite-derived semiconductors have also been widely studied for optoelectronic applications. However, the photovoltaic performance of these perovskite derivatives still lags significantly behind their perovskite counterparts, mainly due to deficiencies at the B-site or X-site of the derivatives, which disrupt the connectivity of the key [BX6] octahedra units. Herein, we developed a class of antiperovskite-derived materials with the formula , achieved by splitting the A anion, originally at the corner site of the cubic antiperovskite structure, into three edge-centered sites. This structural transformation maintains the three-dimensional octahedral framework. The thermodynamic stability, dynamical stability, and band gaps of 80 compounds were calculated using first-principles calculations. Based on criteria including stability and electronic properties, we identified 9 promising antiperovskite derivatives for further evaluation of their photovoltaic performance. Notably, the calculated theoretical maximum efficiencies of Ba3BiI3, Ba3SbI3, and Ba3BiBr3 all exceed 24.5%, which is comparable to that of CH3NH3PbI3 solar cells. Interpretable machine learning analysis was further carried out to identify critical physical descriptors influencing thermodynamic stability and band gap. Our work provides a novel approach for designing high performance perovskite-type structure-inspired semiconductors with potential for optoelectronic applications.

5.
Diabetes Metab J ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39165112

RESUMO

Background: Endothelin-1 (ET-1) is an endogenous vasoconstrictor implicated in coronary artery disease (CAD) and diabetes. This study aimed to determine the prognostic value of ET-1 in the patients with stable CAD under different glucose metabolism states. Methods: In this prospective, large-cohort study, we consecutively enrolled 7,947 participants with angiography-diagnosed stable CAD from April 2011 to April 2017. Patients were categorized by baseline glycemic status into three groups (normoglycemia, prediabetes, and diabetes) and further divided into nine groups by circulating ET-1 levels. Patients were followed for the occurrence of cardiovascular events (CVEs), including nonfatal myocardial infarction, stroke, and cardiovascular mortality. Results: Of the 7,947 subjects, 3,352, 1,653, and 2,942 had normoglycemia, prediabetes, and diabetes, respectively. Over a median follow-up of 37.5 months, 381 (5.1%) CVEs occurred. The risk for CVEs was significantly higher in patients with elevated ET-1 levels after adjustment for potential confounders. When patients were categorized by both status of glucose metabolism and plasma ET-1 levels, the high ET-1 levels were associated with higher risk of CVEs in prediabetes (adjusted hazard ratio [HR], 2.089; 95% confidence interval [CI], 1.151 to 3.793) and diabetes (adjusted HR, 2.729; 95% CI, 1.623 to 4.588; both P<0.05). Conclusion: The present study indicated that baseline plasma ET-1 levels were associated with the prognosis in prediabetic and diabetic patients with stable CAD, suggesting that ET-1 may be a valuable predictor in CAD patients with impaired glucose metabolism.

7.
Nat Commun ; 15(1): 7024, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147746

RESUMO

To achieve high power conversion efficiency in perovskite/silicon tandem solar cells, it is necessary to develop a promising wide-bandgap perovskite absorber and processing techniques in relevance. To date, the performance of devices based on wide-bandgap perovskite is still limited mainly by carrier recombination at their electron extraction interface. Here, we demonstrate assembling a binary two-dimensional perovskite by both alternating-cation-interlayer phase and Ruddlesden-Popper phase to passivate perovskite/C60 interface. The binary two-dimensional strategy takes effects not only at the interface but also in the bulk, which enables efficient charge transport in a wide-bandgap perovskite solar cell with a stabilized efficiency of 20.79% (1 cm2). Based on this absorber, a monolithic perovskite/silicon tandem solar cell is fabricated with a steady-state efficiency of 30.65% assessed by a third party. Moreover, the tandem devices retain 96% of their initial efficiency after 527 h of operation under full spectral continuous illumination, and 98% after 1000 h of damp-heat testing (85 °C with 85% relative humidity).

8.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(8): 840-844, 2024 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-39148389

RESUMO

OBJECTIVES: To investigate the clinical phenotypes and genotypes of children with congenital fibrinogen disorder (CFD). METHODS: A retrospective analysis was conducted on the clinical data of 16 children with CFD. Polymerase chain reaction was used to amplify all exons and flanking sequences of the FGA, FGB, and FGG genes, and sequencing was performed to analyze mutation characteristics. RESULTS: Among the 16 children, there were 9 boys (56%) and 7 girls (44%), with a median age of 4 years at the time of attending the hospital. Among these children, 9 (56%) attended the hospital due to bleeding events, and 7 (44%) were diagnosed based on preoperative examination. The children with bleeding events had a significantly lower fibrinogen activity than those without bleeding events (P<0.05). Genetic testing was conducted on 12 children and revealed a total of 12 mutations, among which there were 4 novel mutations, i.e., c.80T>C and c.1368delC in the FGA gene and c.1007T>A and C.1053C>A in the FGG gene. There were 2 cases of congenital afibrinogenemia caused by null mutations of the FGA gene, with relatively severe bleeding symptoms. There were 7 cases of congenital dysfibrinogenemia mainly caused by heterozygous missense mutations of the FGG and FGA genes, and their clinical phenotypes ranged from asymptomatic phenotype to varying degrees of bleeding. CONCLUSIONS: The clinical phenotypes of children with CFD are heterogeneous, and the severity of bleeding is associated with the level of fibrinogen activity, but there is a weak association between clinical phenotype and genotype.


Assuntos
Afibrinogenemia , Fibrinogênio , Genótipo , Mutação , Fenótipo , Humanos , Masculino , Feminino , Afibrinogenemia/genética , Pré-Escolar , Criança , Fibrinogênio/genética , Lactente , Estudos Retrospectivos , Adolescente , Hemorragia/genética , Hemorragia/etiologia
9.
Langmuir ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150369

RESUMO

The interlayer strategy has emerged as an effective approach for modulating the interfacial polymerization process and improving the permeability and selectivity of polyamide membranes. However, the underlying mechanisms by which charged interlayers influence the interfacial polymerization process remain inadequately understood. In this study, we utilized two distinct charged cellulose nanofibers, namely, carboxylated cellulose (⊖-CNF) and quaternized cellulose ([Formula: see text]-CNF), as interlayers to regulate the interfacial polymerization process. Through simulation results, isothermal titration calorimetry (ITC) and UV tests, we demonstrated that the [Formula: see text]-CNF interlayer, which possesses stronger hydration capability and better piperazine affinity, enhanced the diffusion of piperazine across the reaction interface compared with the ⊖-CNF interlayer. This led to an acceleration of the interfacial polymerization process and the formation of a denser membrane structure. Further investigation revealed that the charged interlayers significantly influenced the surface charging properties of the resulting nanofiltration membranes within a 30 nm range of electrostatic effects. Specifically, the ⊖-CNF interlayer conferred a higher negative charge to the membrane surface, while the [Formula: see text]-CNF interlayer endowed the membranes with a lower surface negative charge. Leveraging these differences, the ⊖-i-TFC membranes exhibited exceptional separation performance for divalent anions, achieving a SO42-/Cl- selectivity of 136. Conversely, the [Formula: see text]-i-TFC membrane demonstrated an enhanced separation of divalent cations, displaying a Mg2+/Na+ selectivity of 3.5. This study lays the groundwork for regulating the surface charging properties of polyamide membranes, offering potential advancements in nanofiltration applications.

10.
J Nanobiotechnology ; 22(1): 401, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982446

RESUMO

Tendon injuries are common orthopedic ailments with a challenging healing trajectory, especially in cases like the Achilles tendon afflictions. The healing trajectory of tendon injuries is often suboptimal, leading to scar formation and functional impairment due to the inherent low metabolic activity and vascularization of tendon tissue. As pressing is needed for effective interventions, efforts are made to explore biomaterials to augment tendon healing. However, tissue engineering approaches face hurdles in optimizing tissue scaffolds and nanomedical strategies. To navigate these challenges, an injectable hydrogel amalgamated with human umbilical vein endothelial cells-derived exosomes (HUVECs-Exos) was prepared and named H-Exos-gel in this study, aiming to enhance tendon repair. In our research involving a model of Achilles tendon injuries in 60 rats, we investigated the efficacy of H-Exos-gel through histological assessments performed at 2 and 4 weeks and behavioral assessments conducted at the 4-week mark revealed its ability to enhance the Achilles tendon's mechanical strength, regulate inflammation and facilitate tendon regeneration and functional recovery. Mechanically, the H-Exos-gel modulated the cellular behaviors of macrophages and tendon-derived stem cells (TDSCs) by inhibiting inflammation-related pathways and promoting proliferation-related pathways. Our findings delineate that the H-Exos-gel epitomizes a viable bioactive medium for tendon healing, heralding a promising avenue for the clinical amelioration of tendon injuries.


Assuntos
Tendão do Calcâneo , Exossomos , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Regeneração , Traumatismos dos Tendões , Cicatrização , Animais , Exossomos/metabolismo , Hidrogéis/química , Hidrogéis/farmacologia , Ratos , Humanos , Tendão do Calcâneo/lesões , Traumatismos dos Tendões/terapia , Cicatrização/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Inflamação
11.
Discov Med ; 36(186): 1354-1362, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054706

RESUMO

Major depressive disorder (MDD) is a clinical condition that significantly impacts patients' physical and mental well-being, quality of life, and social functioning. The pathogenesis of MDD remains unclear, but accumulating evidence suggests a close relationship between gut microbiota and the occurrence and progression of MDD. Gut microbiota refers to the microbial community in the human intestine, which engages in bidirectional communication with the host via the "gut-brain axis" and plays a pivotal role in influencing the host's metabolism, immune system, endocrine system, and nervous system. Modulating gut microbiota entails restoring the balance and function of the intestinal flora through methods such as probiotic intake, fecal transplantation, and dietary intervention. Such modulation has been shown to effectively alleviate depressive symptoms in the host. This review synthesizes recent advancements in research on gut microbiota modulation for ameliorating depressive symptoms and can serve as a foundation for further exploration of the gut microbiota's role in MDD and its potential therapeutic benefits.


Assuntos
Transtorno Depressivo Maior , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Probióticos , Humanos , Microbioma Gastrointestinal/fisiologia , Transtorno Depressivo Maior/microbiologia , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/imunologia , Probióticos/uso terapêutico , Eixo Encéfalo-Intestino/fisiologia , Animais
12.
Front Psychiatry ; 15: 1401623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39041046

RESUMO

Background: Obsessive-compulsive disorder (OCD) is a chronic psychiatric illness with complex clinical manifestations. Cognitive dysfunction may underlie OC symptoms. The frontoparietal network (FPN) is a key region involved in cognitive control. However, the findings of impaired FPN regions have been inconsistent. We employed meta-analysis to identify the fMRI-specific abnormalities of the FPN in OCD. Methods: PubMed, Web of Science, Scopus, and EBSCOhost were searched to screen resting-state functional magnetic resonance imaging (rs-fMRI) studies exploring dysfunction in the FPN of OCD patients using three indicators: the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF), regional homogeneity (ReHo) and functional connectivity (FC). We compared all patients with OCD and control group in a primary analysis, and divided the studies by medication in secondary meta-analyses with the activation likelihood estimation (ALE) algorithm. Results: A total of 31 eligible studies with 1359 OCD patients (756 men) and 1360 healthy controls (733 men) were included in the primary meta-analysis. We concluded specific changes in brain regions of FPN, mainly in the left dorsolateral prefrontal cortex (DLPFC, BA9), left inferior frontal gyrus (IFG, BA47), left superior temporal gyrus (STG, BA38), right posterior cingulate cortex (PCC, BA29), right inferior parietal lobule (IPL, BA40) and bilateral caudate. Additionally, altered connectivity within- and between-FPN were observed in the bilateral DLPFC, right cingulate gyrus and right thalamus. The secondary analyses showed improved convergence relative to the primary analysis. Conclusion: OCD patients showed dysfunction FPN, including impaired local important nodal brain regions and hypoconnectivity within the FPN (mainly in the bilateral DLPFC), during the resting state. Moreover, FPN appears to interact with the salience network (SN) and default mode network (DMN) through pivotal brain regions. Consistent with the hypothesis of fronto-striatal circuit dysfunction, especially in the dorsal cognitive circuit, these findings provide strong evidence for integrating two pathophysiological models of OCD.

13.
Nanomicro Lett ; 16(1): 255, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052164

RESUMO

The architectural design of electrodes offers new opportunities for next-generation electrochemical energy storage devices (EESDs) by increasing surface area, thickness, and active materials mass loading while maintaining good ion diffusion through optimized electrode tortuosity. However, conventional thick electrodes increase ion diffusion length and cause larger ion concentration gradients, limiting reaction kinetics. We demonstrate a strategy for building interpenetrated structures that shortens ion diffusion length and reduces ion concentration inhomogeneity. This free-standing device structure also avoids short-circuiting without needing a separator. The feature size and number of interpenetrated units can be adjusted during printing to balance surface area and ion diffusion. Starting with a 3D-printed interpenetrated polymer substrate, we metallize it to make it conductive. This substrate has two individually addressable electrodes, allowing selective electrodeposition of energy storage materials. Using a Zn//MnO2 battery as a model system, the interpenetrated device outperforms conventional separate electrode configurations, improving volumetric energy density by 221% and exhibiting a higher capacity retention rate of 49% compared to 35% at temperatures from 20 to 0 °C. Our study introduces a new EESD architecture applicable to Li-ion, Na-ion batteries, supercapacitors, etc.

14.
Cell Host Microbe ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39084229

RESUMO

Candida albicans stably colonizes humans but is the leading cause of hospital-acquired fungemia. Traditionally, masking immunogenic moieties has been viewed as a tactic for immune evasion. Here, we demonstrate that C. albicans blocks type I interferon (IFN-I) signaling via translocating an effector protein Cmi1 into host cells. Mechanistically, Cmi1 binds and inhibits TANK-binding kinase 1 (TBK1) to abrogate IFN-regulatory factor 3 (IRF3) phosphorylation, thereby suppressing the IFN-I cascade. Murine infection with a cmi1 mutant displays an exaggerated IFN-I response in both kidneys and bone-marrow-derived macrophages, leading to rapid fungal clearance and host survival. Remarkably, the lack of CMI1 compromises gut commensalism and increases IFN-I response in mouse colonic cells. These phenotypes of cmi1 are rescued by the depletion of IFN-I receptor. This work establishes the importance of TBK1 inhibition in fungal pathogenesis and reveals that a human commensal-pathogenic fungus significantly impacts host immunity during gut colonization and infection via delivering effector proteins into host cells.

15.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990514

RESUMO

Protein-peptide interactions (PPepIs) are vital to understanding cellular functions, which can facilitate the design of novel drugs. As an essential component in forming a PPepI, protein-peptide binding sites are the basis for understanding the mechanisms involved in PPepIs. Therefore, accurately identifying protein-peptide binding sites becomes a critical task. The traditional experimental methods for researching these binding sites are labor-intensive and time-consuming, and some computational tools have been invented to supplement it. However, these computational tools have limitations in generality or accuracy due to the need for ligand information, complex feature construction, or their reliance on modeling based on amino acid residues. To deal with the drawbacks of these computational algorithms, we describe a geometric attention-based network for peptide binding site identification (GAPS) in this work. The proposed model utilizes geometric feature engineering to construct atom representations and incorporates multiple attention mechanisms to update relevant biological features. In addition, the transfer learning strategy is implemented for leveraging the protein-protein binding sites information to enhance the protein-peptide binding sites recognition capability, taking into account the common structure and biological bias between proteins and peptides. Consequently, GAPS demonstrates the state-of-the-art performance and excellent robustness in this task. Moreover, our model exhibits exceptional performance across several extended experiments including predicting the apo protein-peptide, protein-cyclic peptide and the AlphaFold-predicted protein-peptide binding sites. These results confirm that the GAPS model is a powerful, versatile, stable method suitable for diverse binding site predictions.


Assuntos
Peptídeos , Sítios de Ligação , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Biologia Computacional/métodos , Algoritmos , Proteínas/química , Proteínas/metabolismo , Aprendizado de Máquina
16.
PLoS Pathog ; 20(7): e1012398, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038050

RESUMO

Inflammasomes play pivotal roles in inflammation by processing and promoting the secretion of IL-1ß. Caspase-1 is involved in the maturation of IL-1ß and IL-18, while human caspase-4 specifically processes IL-18. Recent structural studies of caspase-4 bound to Pro-IL-18 reveal the molecular basis of Pro-IL-18 activation by caspase-4. However, the mechanism of caspase-1 processing of pro-IL-1ß and other IL-1ß-converting enzymes remains elusive. Here, we observed that swine Pro-IL-1ß (sPro-IL-1ß) exists as an oligomeric precursor unlike monomeric human Pro-IL-1ß (hPro-IL-1ß). Interestingly, Seneca Valley Virus (SVV) 3C protease cleaves sPro-IL-1ß to produce mature IL-1ß, while it cleaves hPro-IL-1ß but does not produce mature IL-1ß in a specific manner. When the inflammasome is blocked, SVV 3C continues to activate IL-1ß through direct cleavage in porcine alveolar macrophages (PAMs). Through molecular modeling and mutagenesis studies, we discovered that the pro-domain of sPro-IL-1ß serves as an 'exosite' with its hydrophobic residues docking into a positively charged 3C protease pocket, thereby directing the substrate to the active site. The cleavage of sPro-IL-1ß generates a monomeric and active form of IL-1ß, initiating the downstream signaling. Thus, these studies provide IL-1ß is an inflammatory sensor that directly detects viral protease through an independent pathway operating in parallel with host inflammasomes.


Assuntos
Proteases Virais 3C , Inflamassomos , Interleucina-1beta , Picornaviridae , Proteínas Virais , Animais , Interleucina-1beta/metabolismo , Proteases Virais 3C/metabolismo , Suínos , Humanos , Proteínas Virais/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Infecções por Picornaviridae/metabolismo , Infecções por Picornaviridae/virologia , Cisteína Endopeptidases/metabolismo , Especificidade da Espécie , Macrófagos Alveolares/virologia , Macrófagos Alveolares/metabolismo
17.
Front Pharmacol ; 15: 1371890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948467

RESUMO

Introduction: Rhubarb is a frequently used and beneficial traditional Chinese medicine. Wild resources of these plants are constantly being depleted, meaning that rhubarb products have been subjected to an unparalleled level of adulteration. Consequentially, reliable technology is urgently required to verify the authenticity of rhubarb raw materials and commercial botanical drugs. Methods: In this study, the barcode-DNA high-resolution melting (Bar-HRM) method was applied to characterize 63 rhubarb samples (five Polygonaceae species: Rheum tanguticum, Rh. palmatum, Rh. officinale, Rumex japonicus and Ru. sp.) and distinguish the rhubarb contents of 24 traditional Chinese patent medicine (TCPM) samples. Three markers, namely ITS2, rbcL and psbA-trnH, were tested to assess the candidate DNA barcodes for their effectiveness in distinguishing rhubarb from its adulterants. A segment from ITS2 was selected as the most suitable mini-barcode to identify the botanical drug rhubarb in TCPMs. Then, rhubarbs and TCPM samples were subjected to HRM analysis based on the ITS2 barcode. Results: Among the tested barcoding loci, ITS2 displayed abundant sites of variation and was effective in identifying Polygonaceae species and their botanical origins. HRM analysis based on the ITS2 mini-barcode region successfully distinguished the authenticity of five Polygonaceae species and eight batches of TCPMs. Of the 18 TCPM samples, 66.7 % (12 samples) were identified as containing Rh. tanguticum or Rh. officinale. However, 33.3 % were shown to consist of adulterants. Conclusions: These results demonstrated that DNA barcoding combined with HRM is a specific, suitable and powerful approach for identifying rhubarb species and TCPMs, which is crucial to guaranteeing the security of medicinal plants being traded internationally.

18.
NPJ Genom Med ; 9(1): 38, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013887

RESUMO

The heterogeneity of systemic lupus erythematosus (SLE) can be explained by epigenetic alterations that disrupt transcriptional programs mediating environmental and genetic risk. This study evaluated the epigenetic contribution to SLE heterogeneity considering molecular and serological subtypes, genetics and transcriptional status, followed by drug target discovery. We performed a stratified epigenome-wide association studies of whole blood DNA methylation from 213 SLE patients and 221 controls. Methylation quantitative trait loci analyses, cytokine and transcription factor activity - epigenetic associations and methylation-expression correlations were conducted. New drug targets were searched for based on differentially methylated genes. In a stratified approach, a total of 974 differential methylation CpG sites with dependency on molecular subtypes and autoantibody profiles were found. Mediation analyses suggested that SLE-associated SNPs in the HLA region exert their risk through DNA methylation changes. Novel genetic variants regulating DNAm in disease or in specific molecular contexts were identified. The epigenetic landscapes showed strong association with transcription factor activity and cytokine levels, conditioned by the molecular context. Epigenetic signals were enriched in known and novel drug targets for SLE. This study reveals possible genetic drivers and consequences of epigenetic variability on SLE heterogeneity and disentangles the DNAm mediation role on SLE genetic risk and novel disease-specific meQTLs. Finally, novel targets for drug development were discovered.

19.
J Geriatr Cardiol ; 21(5): 523-533, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38948897

RESUMO

OBJECTIVES: To evaluate the predictive value of fasting plasma glucose (FPG) for in-hospital mortality in patients with acute myocardial infarction (AMI) with different glucose metabolism status. METHODS: We selected 5,308 participants with AMI from the prospective, nationwide, multicenter CAMI registry, of which 2,081 were diabetic and 3,227 were nondiabetic. Patients were divided into high FPG and low FPG groups according to the optimal cutoff values of FPG to predict in-hospital mortality for diabetic and nondiabetic cohorts, respectively. The primary endpoint was in-hospital mortality. RESULTS: Overall, 94 diabetic patients (4.5%) and 131 nondiabetic patients (4.1%) died during hospitalization, and the optimal FPG thresholds for predicting in-hospital death of the two cohorts were 13.2 mmol/L and 6.4 mmol/L, respectively. Compared with individuals who had low FPG, those with high FPG were significantly associated with higher in-hospital mortality in diabetic cohort (10.1% vs. 2.8%; odds ratio [OR] = 3.862, 95% confidence interval [CI]: 2.542-5.869) and nondiabetic cohort (7.4% vs. 1.7%; HR = 4.542, 95%CI: 3.041-6.782). After adjusting the potential confounders, this significant association was not changed. Furthermore, FPG as a continuous variable was positively associated with in-hospital mortality in single-variable and multivariable models regardless of diabetic status. Adding FPG to the original model showed a significant improvement in C-statistic and net reclassification in diabetic and nondiabetic cohorts. CONCLUSIONS: This large-scale registry indicated that there is a strong positive association between FPG and in-hospital mortality in AMI patients with and without diabetes. FPG might be useful to stratify patients with AMI.

20.
Adv Sci (Weinh) ; : e2309459, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049738

RESUMO

Class IIa histone deacetylases (Class IIa HDACs) play critical roles in regulating essential cellular metabolism and inflammatory pathways. However, dissecting the specific roles of each class IIa HDAC isoform is hindered by the pan-inhibitory effect of current inhibitors and a lack of tools to probe their functions beyond epigenetic regulation. In this study, a novel PROTAC-based compound B4 is developed, which selectively targets and degrades HDAC7, resulting in the effective attenuation of a specific set of proinflammatory cytokines in both lipopolysaccharide (LPS)-stimulated macrophages and a mouse model. By employing B4 as a molecular probe, evidence is found for a previously explored role of HDAC7 that surpasses its deacetylase function, suggesting broader implications in inflammatory processes. Mechanistic investigations reveal the critical involvement of HDAC7 in the Toll-like receptor 4 (TLR4) signaling pathway by directly interacting with the TNF receptor-associated factor 6 and TGFß-activated kinase 1 (TRAF6-TAK1) complex, thereby initiating the activation of the downstream mitogen-activated protein kinase/nuclear factor-κB (MAPK/NF-κB) signaling cascade and subsequent gene transcription. This study expands the insight into HDAC7's role within intricate inflammatory networks and highlights its therapeutic potential as a novel target for anti-inflammatory treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA