Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 2387, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493192

RESUMO

Mask-free multi-photon lithography enables the fabrication of arbitrary nanostructures low cost and more accessible than conventional lithography. A major challenge for multi-photon lithography is to achieve ultra-high precision and desirable lateral resolution due to the inevitable optical diffraction barrier and proximity effect. Here, we show a strategy, light and matter co-confined multi-photon lithography, to overcome the issues via combining photo-inhibition and chemical quenchers. We deeply explore the quenching mechanism and photoinhibition mechanism for light and matter co-confined multiphoton lithography. Besides, mathematical modeling helps us better understand that the synergy of quencher and photo-inhibition can gain a narrowest distribution of free radicals. By using light and matter co-confined multiphoton lithography, we gain a 30 nm critical dimension and 100 nm lateral resolution, which further decrease the gap with conventional lithography.

3.
Opt Lett ; 49(1): 109-112, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134164

RESUMO

Photoinhibition (PI) mechanisms have been introduced in nanofabrication which allows breaking the diffraction limit by large factors. Donut-shaped laser is usually selected as a depletion beam to reduce linewidth, but the parasitic process has made the results of the experiment less than expected. As a result, the linewidth is difficult to achieve below 50 nm with 780 nm femtosecond and 532 nm continuous-wave lasers. Here, we propose a new, to the best of our knowledge, method based on a center-non-zero (CNZ) depletion laser to further reduce linewidth. By constructing a smaller zone of action under the condition of keeping the maximum depletion intensity constant, a minimum linewidth of 30 nm (λ / 26) was achieved. Two ways to construct CNZ spots were discussed and experimented, and the results show the advantages of our method to reduce the parasitic process to further improve the writing resolution.

4.
Opt Lett ; 49(1): 89-92, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134161

RESUMO

Absorption of the long-wave infrared from human beings and the surroundings is a key step to infrared imaging and sensing. Here we demonstrate a flexible and transparent broadband infrared absorber using the photoresist-assisted metamaterials fabricated by one-step laser direct writing. The photoresist is patterned by the laser as an insulator layer as well as a mask to build the complementary bilayer metamaterials without lithography. The average absorptivity is 94.5% from 8 to 14 µm in experiment due to the broadband destructive interference of the reflected beam explained by the Fabry-Perot cavity model. The proposed absorber is applicable to various substrates with additional merits of polarization insensitivity and large angle tolerance, which offers a promising solution for thermal detection and management.

5.
Opt Lett ; 48(21): 5547-5550, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910699

RESUMO

Fluorescence lifetime microscopy has been widely used in quantifying cellular interaction or histopathological identification of different stained tissues. A novel, to the best of our knowledge, approach for high-throughput multiplexed fluorescence lifetime imaging is presented. To establish a high-throughput fluorescence lifetime acquisition system, a uniformed illumination optical focus array was generated by a novel computer-generated hologram algorithm based on matrix triple product. This, in conjunction with an array detector and multichannel time-correlated single-photon counting, enables the full use of the acquisition ability of each detector. By utilizing interval segmentation of photon time detection, a high-throughput multiplexed fluorescence lifetime imaging is achieved. Experimental results demonstrate that this method achieves a fivefold increase in the collection throughput of fluorescence lifetime and is capable of simultaneous dual-target fluorescence lifetime measurement.

6.
ACS Appl Mater Interfaces ; 15(25): 30870-30879, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37316963

RESUMO

Two-photon polymerization based direct laser writing (DLW) is an emerging micronano 3D fabrication technology wherein two-photon initiators (TPIs) are a key component in photoresists. Upon exposure to a femtosecond laser, TPIs can trigger the polymerization reaction, leading to the solidification of photoresists. In other words, TPIs directly determine the rate of polymerization, physicochemical properties of polymers, and even the photolithography feature size. However, they generally exhibit extremely poor solubility in photoresist systems, severely inhibiting their application in DLW. To break through this bottleneck, we propose a strategy to prepare TPIs as liquids via molecular design. The maximum weight fraction of the as-prepared liquid TPI in photoresist significantly increases to 2.0 wt %, which is several times higher than that of commercial 7-diethylamino-3-thenoylcoumarin (DETC). Meanwhile, this liquid TPI also exhibits an excellent absorption cross section (64 GM), allowing it to absorb femtosecond laser efficiently and generate abundant active species to initiate polymerization. Remarkably, the respective minimum feature sizes of line arrays and suspended lines are 47 and 20 nm, which are comparable to that of the-state-of-the-art electron beam lithography. Besides, the liquid TPI can be utilized to fabricate various high-quality 3D microstructures and manufacture large-area 2D devices at a considerable writing speed (1.045 m s-1). Therefore, the liquid TPI would be one of the promising initiators for micronano fabrication technology and pave the way for future development of DLW.

7.
Micromachines (Basel) ; 13(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296124

RESUMO

Beams with optical vortices are widely used in various fields, including optical communication, optical manipulation and trapping, and, especially in recent years, in the processing of nanoscale structures. However, circular vortex beams are difficult to use for the processing of chiral micro and nanostructures. This paper introduces a multiramp helical-conical beam that can produce a three-dimensional spiral light field in a tightly focused system. Using this spiral light beam and the two-photon direct writing technique, micro-nano structures with chiral characteristics in space can be directly written under a single exposure. The fabrication efficiency is more than 20 times higher than the conventional point-by-point writing strategy. The tightly focused properties of the light field were utilized to analyze the field-dependent properties of the micro-nano structure, such as the number of multiramp mixed screw-edge dislocations. Our results enrich the means of two-photon polymerization technology and provide a simple and stable way for the micromachining of chiral microstructures, which may have a wide range of applications in optical tweezers, optical communications, and metasurfaces.

8.
ACS Appl Mater Interfaces ; 14(27): 31332-31342, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35786857

RESUMO

For decades, photoinhibited two-photon lithography (PI-TPL) has been continually developed and applied into versatile nanofabrication. However, ultrahigh precision fabrication on wafer by PI-TPL remains challenging, due to the lack of a refractive index (n) matched photoresist (Rim-P) with effective photoinhibition capacity for dip-in mode. In this paper, various Rim-P are developed and then screened for their applications in PI-TPL. In addition, different lithography methods (in terms of oil-mode and dip-in mode) are analyzed by use of optical simulations combined with experiments. Remarkably, one type of Rim-P (n = 1.518) shows effective photoinhibition capacity, which represents an outstanding breakthrough in the field of PI-TPL. In contrast to photoresist with an unsuitable refractive index, optical aberrations are almost completely eliminated in the dip-in mode by using the Rim-P. Consequently, features with a minimum critical dimension as small as 39 nm are successfully achieved on wafer by dip-in PI-TPL, which paves the way for subdiffraction silicon-based chip manufacturing by PI-TPL. Moreover, through a combination of the Rim-P and dip-in mode, the ability to achieve tall and high-precision three-dimensional nanostructures is no longer problematic.

9.
Nat Commun ; 9(1): 4818, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446673

RESUMO

Imaging and tracking of near-surface three-dimensional volumetric nanoscale dynamic processes of live cells remains a challenging problem. In this paper, we propose a multi-color live-cell near-surface-volume super-resolution microscopy method that combines total internal reflection fluorescence structured illumination microscopy with multi-angle evanescent light illumination. We demonstrate that our approach of multi-angle interference microscopy is perfectly adapted to studying subcellular dynamics of mitochondria and microtubule architectures during cell migration.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Microscopia de Interferência/métodos , Microtúbulos/ultraestrutura , Mitocôndrias/ultraestrutura , Osteoblastos/ultraestrutura , Linhagem Celular Tumoral , Movimento Celular , Tamanho Celular , Cor , Corantes Fluorescentes/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Processamento de Imagem Assistida por Computador , Coloração e Rotulagem/métodos
10.
Biomed Opt Express ; 9(10): 5037-5051, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30319920

RESUMO

The fast imaging speed and low-intensity requirement of structured illumination microscopy (SIM) have made it one of the most widely used imaging tools in live cell imaging. In order to obtain a high fidelity reconstructed image, a precise estimation of the phase of the illumination pattern is required, especially in those structured illumination based techniques that rely on high-order harmonics to improve the resolution. This can be achieved in one of two fundamental ways. The first is to build a high-end control system capable of shifting a sinusoidal pattern with high precision, while the second is to apply estimation algorithms to determine how patterns shift during post-processing. The latter method is preferred in low-cost super-resolution imaging systems; however, existing algorithms are either time-consuming or fail due to noise and a low modulation depth. In this paper, we introduce additional matrixes into the phase estimation algorithm and propose an inverse matrix based phase estimation method with which analytical solutions of the phases can be determined without iteration. The proposed algorithm was validated via simulation and experiments using a home-made total internal reflection fluorescent SIM system (TIRF-SIM). When tested, the method obtained the true phase even when the modulation depth was low. The source code is now available for download by researchers and others.

11.
J Biomed Opt ; 23(4): 1-9, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29693956

RESUMO

We present an alternative approach to realize structured illumination microscopy (SIM), which is capable for live cell imaging. The prototype utilizes two sets of scanning galvo mirrors, a polarization converter and a piezo-platform to generate a fast shifted, s-polarization interfered and periodic variable illumination patterns. By changing the angle of the scanning galvanometer, we can change the position of the spots at the pupil plane of the objective lens arbitrarily, making it easy to switch between widefield and total internal reflection fluorescent-SIM mode and adapting the penetration depth in the sample. Also, a twofold resolution improvement is achieved in our experiments. The prototype offers more flexibility of pattern period and illumination orientation changing than previous systems.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Algoritmos , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...