Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37444216

RESUMO

Litchi (Litchi chinensis Sonn.) fruit deterioration occurs rapidly after harvest and is characterized by pericarp browning, pulp softening, and decay. In this study, we found that calcium chloride (CaCl2) treatment (5 g L-1 CaCl2 solution vacuum infiltration for 5 min) affected the cell wall component contents and cell wall-degrading enzyme activities of litchi fruit during storage at room temperature. CaCl2 treatment significantly increased the contents of Ca2+ and cellulose, while it decreased the water-soluble pectin content, and the activities of polygalacturonase, ß-galactosidase, and cellulase in the litchi pericarp. Meanwhile, the treatment resulted in significantly increased contents of Ca2+, water-soluble pectin, ionic-soluble pectin, covalent-soluble pectin and hemicellulose, and upregulated activities of pectinesterase and ß-galactosidase, while significantly decreasing the activities of polygalacturonase and cellulase in litchi pulp. The above results indicate that CaCl2 treatment strengthened the cell wall structure of litchi fruit. More importantly, the enzymatic browning of the pericarp, softening of the pulp, and disease incidence were delayed. The treatment had a more pronounced effect on the pericarp than on the pulp. We consider CaCl2 treatment to be a safe and effective treatment for maintaining the postharvest quality of litchi fruit.

2.
Plants (Basel) ; 11(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36235369

RESUMO

Although the effects of phytohormones (mainly salicylic acid) on the storability of longan fruit have been reported, the relationship between postharvest hormone variation and signal transduction and storability remains unexplored. The basis of physiology, biochemistry, hormone content and signalling for the storability difference at room-temperature between 'Shixia' and 'Luosanmu' longan fruit were examined. 'Luosanmu' longan exhibited faster pericarp browning, aril breakdown and rotting during storage. 'Luosanmu' pericarp exhibited higher malondialdehyde but faster decreased total phenolics, flavonoid, glutathione, vitamin C, catalase activity and gene expression. Higher H2O2 and malondialdehyde but lower glutathione, glutathione-reductase and peroxidase activities, while higher activities and gene expressions of polygalacturonase, ß-galactosidase and cellulose, lower covalent-soluble pectin, cellulose and hemicellulose but higher water-soluble pectin were observed in 'Luosanmu' aril. Lower abscisic acid and methyl jasmonate but higher expressions of LOX2, JAZ and NPR1 in pericarp, while higher abscisic acid, methyl jasmonate and salicylic acid together with higher expressions of ABF, JAZ, NPR1 and PR-1 in 'Luosanmu' aril were observed. In conclusion, the imbalance between the accumulation and scavenging of active oxygen in 'Luosanmu' longan might induce faster lipid peroxidation and senescence-related hormone signalling and further the polymerization of phenolics in pericarp and polysaccharide degradation in aril.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...