Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 253: 119056, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38704005

RESUMO

Ship ballast water promoting the long-range migration of antibiotic resistance genes (ARGs) has raised a great concern. This study attempted to reveal ARGs profile in ballast water and decipher their hosts and potential risk using metagenomic approaches. In total, 710 subtypes across 26 ARG types were identified among the ballast water samples from 13 ships of 11 countries and regions, and multidrug resistance genes were the most dominant ARGs. The composition of ARGs were obviously different across samples, and only 5% of the ARG subtypes were shared by all samples. Procrustes analysis showed the bacterial community contributed more than the mobile genetic elements (MGEs) in shaping the antibiotic resistome. Further, 79 metagenome-assembled genomes (46 genera belong to four phyla) were identified as ARG hosts, with predominantly affiliated with the Proteobacteria. Notably, potential human pathogens (Alcaligenes, Mycolicibacterium, Rhodococcus and Pseudomonas) were also recognized as the ARG hosts. Above 30% of the ARGs hosts contained the MGEs simultaneously, supporting a pronounced horizontal gene transfer capability. A total of 43 subtypes (six percent of overall ARGs) of ARGs were assessed with high-risk, of which 23 subtypes belonged to risk Rank I (including rsmA, ugd, etc.) and 20 subtypes to the risk Rank II (including aac(6)-I, sul1, etc.). In addition, antibiotic resistance risk index indicated the risk of ARGs in ballast water from choke points of maritime trade routes was significantly higher than that from other regions. Overall, this study offers insights for risk evaluation and management of antibiotic resistance in ballast water.


Assuntos
Bactérias , Navios , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/isolamento & purificação , Metagenômica , Microbiologia da Água , Antibacterianos/farmacologia , Metagenoma , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética
2.
iScience ; 27(5): 109685, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38680660

RESUMO

The mass transfer in lithium-ion batteries is a low-frequency dynamic that affects their voltage and performance. To find an effective way to describe the mass transfer in lithium-ion batteries, a simplified electrochemical lithium-ion battery model based on ensemble learning is proposed. The proposed model simplifies lithium-ion transfer in electrode particles with ensemble learning which ensembles discrete-time realization algorithm (DRA), fractional-order Padé approximation model (FOM), and three parameters (TPM) parabolic. The lithium-ion transfer in the electrolyte is simplified by the first-order inertial element (FIE). The results show that the proposed model achieves not only accurate lithium-ion concentration prediction in solid and electrolyte phase but also precise voltage prediction with low computational complexity.

3.
Int Immunopharmacol ; 127: 111267, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38091827

RESUMO

Lung adenocarcinoma (LUAD) is the most common pathological subtype of lung cancer and has a poor prognosis. Immune Checkpoint Blockage (ICB) have been shown to improve the survival of LUAD in the last decade. CD8 + T cell infiltration is significantly related to LUAD prognosis and plays a critical role in ICB response efficiency. Chemokines expressed and secreted by tumor and microenvironment cells regulate the recruitment of CD8 + T cells. A cytoplasm-dominant circRNA, termed circMAPK1, was found to be down-regulated in LUAD and dramatically suppressed the growth of LUAD upon circMAPK1 overexpression in immunocompetent mice. Meanwhile, it was found that circMAPK1 significantly promoted the CD8 + T cell intratumoral infiltration in vitro and in vivo. CircMAPK1 was identified as binding IGF2BP1 in the cytoplasm and inducing IGF2BP1 to occupy the 3'UTR of CCL5 mRNA, resulting in retained stability of CCL5 mRNA. In general, circMAPK1 is a microenvironment-associated circRNA that recruits CD8 + T cells in LUAD. CircMAPK1 is an effective microenvironment regulator and a potential nucleic acid drug that can be combined with ICB to improve immunotherapy response efficiency.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Linfócitos T CD8-Positivos , Neoplasias Pulmonares/genética , Prognóstico , RNA Circular/genética , RNA Mensageiro , Microambiente Tumoral , Regulação para Cima
4.
Mar Pollut Bull ; 194(Pt B): 115336, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542926

RESUMO

Accurate detecting bacterial communities in ballast water and sediments supports risk management. This study uses full-length 16S rRNA gene sequencing to investigate the bacterial communities in ballast water and sediments, focusing on detecting pathogens. The results indicate that full-length sequencing more accurately reveals the species diversity. There is a significant difference (P < 0.05) in bacterial communities between ballast water and sediments, despite both being dominated by the Proteobacteria phylum. Thirty human and fish pathogens were identified by full-length sequencing, yet only five pathogens were detected from V3-V4 sequencing. Notably, emerging pathogens such as Citrobacter freundii and Nocardia nova are detected in samples, which are harmful to aquaculture and human health. Several opportunistic pathogens were also identified. In summary, this study provides important insights into the bacterial communities in ballast water and sediments, highlighting the need for strict management.


Assuntos
Navios , Água , Humanos , RNA Ribossômico 16S/genética , Genes de RNAr , Bactérias/genética
5.
Mar Environ Res ; 190: 106115, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37540963

RESUMO

Ballast water is one of the main vectors for the spread of harmful organisms among geologically isolated waters. However, the successional processes of microbial functions and assembly processes in ballast water during the long-term shipping voyage remain unclear. In this study, the compositions, ecological functions, community assembly, and potential environmental drivers of bacteria and microeukaryotes were investigated in simulated ballast water microcosms for 120 days. The results showed that the diversity and compositions of the bacterial and microeukaryotic communities varied significantly in the initial 40 days (T0∼T40 samples) and then gradually converged. The relative abundance of Proteobacteria showed a distinct tendency to decrease (87.90%-41.44%), while that of Ascomycota exhibited an increasing trend (6.35%-62.12%). The functional groups also varied significantly over time and could be related to the variations of the microbial community. The chemoheterotrophy and aerobic chemoheterotrophy functional groups for bacteria decreased from 44.80% to 28.02% and from 43.77% to 25.39%, respectively. Additionally, co-occurrence network analysis showed that the structures of the bacterial community in T60∼T120 samples were more stable than those in T0∼T40 samples. Stochastic processes also significantly affected the community assembly of bacteria and microeukaryotes. pH played the most significant role in driving the structures and assembly processes of the bacterial and microeukaryotic communities. The results of this study could aid in the understanding of variations in the functions and ecological processes of bacterial and microeukaryotic communities in ballast water over time and provide a theoretical basis for its management.


Assuntos
Microbiota , Água , Bactérias
6.
Environ Res ; 218: 114990, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463990

RESUMO

Ballast water and sediments can serve as prominent vectors for the widespread dispersal of pathogens between geographically distant areas. However, information regarding the diversity and distribution of the bacterial pathogens in ballast water and sediments is highly limited. In this study, using high-throughput sequencing and quantitative PCR, we investigated the composition and abundance of potential pathogens, and their associations with indicator microorganisms. We accordingly detected 48 potential bacterial pathogens in the assessed ballast water and sediments, among which there were significant differences in the compositions and abundances of pathogenic bacterial communities characterizing ballast water and sediments. Rhodococcus erythropolis, Bacteroides vulgatus, and Vibrio campbellii were identified as predominant pathogens in ballast water, whereas Pseudomonas stutzeri, Mycobacterium paragordonae, and Bacillus anthracis predominated in ballast sediments. Bacteroidetes, Vibrio alginolyticus, Vibrio parahaemolyticus, and Escherichia coli were generally detected with median values of 8.54 × 103-1.22 × 107 gene copies (GC)/100 mL and 1.16 × 107-3.97 × 109 GC/100 g in ballast water and sediments, respectively. Notably, the concentrations of Shigella sp., Staphylococcus aureus, and V. alginolyticus were significantly higher in ballast sediments than in the water. In addition, our findings tend to confirm that the indicator species specified by the International Maritime Organization (IMO) might underestimate the pathogen risk in the ballast water and sediments, as these bacteria were unable to predict some potential pathogens assessed in this study. In summary, this study provides a comprehensive insight into the spectrum of the potential pathogens that transferred by ship ballast tanks and emphasizes the need for the implementation of IMO convention on ballast sediment management.


Assuntos
Bacteroidetes , Água , Prevalência , Navios
7.
Org Lett ; 24(2): 786-790, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34989584

RESUMO

A scalable cyanation of gem-difluoroalkenes to (hetero)arylacetonitrile derivatives was developed. This strategy features mild reaction conditions, excellent yields, wide substrate scope, and broad functional group tolerance. Significantly, in this reaction, aqueous ammonia offers a "N" source for the "CN" reagent and entirely avoids the use of toxic cyanating reagents or metal catalysis. Hence, we provide a green and alternative method for the synthesis of arylacetonitriles.

8.
Environ Sci Pollut Res Int ; 27(34): 42898-42907, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32725569

RESUMO

Blood biochemical profile can be used to evaluate the health status of fish and ambient environmental conditions. However, it is not well known in the aquaponic systems, let alone their differences between hydroponic and aquatic plants. A 5-month trial was conducted to investigate the changes in the growth performance and blood index of Qihe crucian carp Carassius auratus in eight aquaponic systems (control, Ipomoea aquatica, Lactuca sativa, Lemna minor, Amaranthus tricolor, Ceratophyllum demersum, Vallisneria spiralis, and C. demersum-net, indicated by CK, Ia, Ls, Lm, At, Cd, Vn, and Cd-ns). Results showed that weight gain rate and specific growth rate did not significantly differ among the eight groups. However, most blood parameters significantly differed among the eight groups. The glucose level and activities of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase were generally larger in Cd, Lm, Vn, and CK groups, and smaller in Ia, Ls, or At groups. Additionally, the triglyceride, cholesterol, albumin, and albumin/globulin were mostly elevated in Ia and At groups. Moreover, the creatinine, total proteins, and globulin levels peaked in Vn group. These findings showed that the blood biochemical profile was more sensitive than the growth performances and that hydroponic plants can induce a higher production and more healthy status of Qihe crucian carp C. auratus when compared with aquatic plants or no plants.


Assuntos
Carpas , Animais , Carpa Dourada
9.
J Colloid Interface Sci ; 557: 84-93, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514096

RESUMO

Special-wetting materials have been broadly studied in various oil/water separation processes. However, there are granted numerous challenges in extremely durable materials with mechanical robustness, especially considering the great requirements in purifying emulsified oil/water mixtures. Herein, we present a facile route to prepare robust superhydrophobic surface by spraying Octadecyltrimethoxys modified attapulgite suspension combined with inorganic adhesive on mesh. The as-prepared meshes show eminent superhydrophobicity and acquire a gravity driven water-in-oil emulsion separation with efficiency above 99.7% and flux above 106.7 L m-2h-1 even after multiple cycles. In addition, the meshes exhibit robust and stable superhydrophobicity with water contact angles above 150° after 200 sandpaper abrasion (transverse shear force) and harsh sand impact (longitudinal impact force) cycles, and meanwhile, still maintain outstanding emulsion separation performance during tests. This study is meaningful for the development of fabricating low-energy separating materials with high efficiency and mechanical robustness for harsh chemical engineering.

10.
FEBS Open Bio ; 9(9): 1503-1520, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31268628

RESUMO

Increases in atmospheric CO2 partial pressure have lowered seawater pH in marine ecosystems, a process called ocean acidification (OA). The effects of OA during the critical stages of larval development may have disastrous consequences for some marine species, including Babylonia areolata (Link 1807), a commercially important sea snail in China and South East Asia. To investigate how OA affects the proteome of Babylonia areolata, here we used label-free proteomics to study protein changes in response to acidified (pH 7.6) or ambient seawater (pH 8.1) during three larvae developmental stages of B. areolata, namely, the veliger larvae before attachment (E1), veliger larvae after attachment (E2), and carnivorous juvenile snail (E3). In total, we identified 720 proteins. This result suggested that acidification seriously affects late veliger stage after attachment (E2). Further examination of the roles of differentially expressed proteins, which include glutaredoxin, heat-shock protein 70, thioredoxin, catalase, cytochrome-c-oxidase, peroxiredoxin 6, troponin T, CaM kinase II alpha, proteasome subunit N3 and cathepsin L, will be important for understanding the molecular mechanisms underlying pH reduction.


Assuntos
Dióxido de Carbono/química , Proteoma/química , Caramujos/crescimento & desenvolvimento , Animais , Concentração de Íons de Hidrogênio , Oceanos e Mares
11.
J Colloid Interface Sci ; 549: 114-122, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026766

RESUMO

The rapid industrial growth and the frequent oil spill accidents have led to the large production of oily wastewater. Thus, it is urging to develop a low-cost and eco-friendly material to purify the oily wastewater. In our work, the waste cigarette filter as the raw material was used to prepare cigarette filter coated meshes (CFCMs) by a facile electrospinning approach. The as-prepared CFCMs prewetted with water or oil achieved the special wetting performance of underwater superoleophobicity or underoil superhydrophobicity without any further chemical modification. Hence, the cigarette filter coated meshes with larger or smaller pore size can be applied to on-demand immiscible oil/water mixtures (light or heavy oil/water mixtures) and oil/water emulsions separation (water-in-oil or oil-in-water emulsions), respectively. Moreover, the CFCMs still exhibited high separation efficiency larger than 99.9% for immiscible oil/water mixtures and emulsions after many cyclic testing. The work provides an application in oil/water separation for waste cigarette filters and contributes to reduce the pollution for environment from the waste cigarette filters.

12.
Environ Sci Pollut Res Int ; 25(34): 34027-34045, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30280343

RESUMO

Few studies have focused on the biomechanical responses of submerged, rosette-forming macrophytes to wave action, water depth, or their co-occurrence in naturally eutrophic systems. The plant architecture, root anchorage strength-related traits, leaf morphology, and biomechanics of Vallisneria natans inhabiting a range of water depths were examined along three transects (T1, T2, and T3) in a eutrophic lake, Lake Erhai, in Yunnan Province, China. These transects were exposed to weak wave action and hyper-eutrophication (T1), moderate wave action and eutrophication (T2), or strong wave action and eutrophication (T3). The results showed that V. natans was mainly distributed at intermediate depths, with the widest colonization depth in T1. The values of plant architecture, root anchorage strength-related traits, leaf morphology, and biomechanics were generally highest in T3 and smallest in T2. Along the depth gradient, these values were generally highest at 3.5, 2.5, and 2.5 m for the plants growing in T1, T2, and T3, respectively. These findings suggest that V. natans adopts a "tolerance" strategy to cope with the effects of strong wave action in eutrophic habitats and an "avoidance" strategy when exposed to moderate wave action in eutrophic areas. Since the absence of an avoidance strategy increases the resistance to low-light stress at the expense of increased drag forces, there is a limit to the wave action that V. natans can withstand. This study indicates that biomechanics could be important when determining the distribution pattern of V. natans in Lake Erhai.


Assuntos
Hydrocharitaceae/fisiologia , Lagos , Fenômenos Biomecânicos , China , Ecossistema , Eutrofização , Hydrocharitaceae/anatomia & histologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia
13.
Sci Total Environ ; 622-623: 421-435, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29220767

RESUMO

Eutrophication and hydrodynamics determine the final distribution patterns of aquatic macrophytes; however, there is limited available knowledge regarding their interactive effects. Morphological and biomechanical responses to eutrophication and hydrodynamic stresses were assessed by sampling five abundant and dominant species, Potamogeton maackianus, P. pectinatus, P. lucens, Ceratophyllum demersum and Myriophyllum spicatum, in three macrophyte beds in Lake Erhai, Yunnan Province, China: one exposed to eutrophication and moderate southeast (SE) wind; one with mesotrophication, but sheltered by the lakeshore, with weak wind disturbance; and one with meso-eutrophication and strong SE wind. The results showed significant interactive effects of eutrophication and hydrodynamics on most biomechanical traits and some morphological traits, suggesting that aquatic macrophytes preferentially undergo biomechanical adjustments to resist the coexisting eutrophication and hydrodynamic stresses. In particular, hydrodynamics increased both the tensile force and tensile strain of P. maackianus under meso-eutrophication and dramatically decreased them in eutrophic areas, suggesting that eutrophication triggers mechanical failure in this species. Additionally, P. pectinatus, C. demersum and M. spicatum showed the lowest and highest values for the biomechanical variables (greater values for M. spicatum) in the most eutrophic and hydrodynamic areas, respectively, implying that increases in hydrodynamics primarily induce mechanical damage in eutrophic species. The plants generally exhibited greater tensile strain in both shallow and deep waters and the greatest tensile force at moderate depths. The stem cross-sectional area, plant height, stem length, internode length, and branch traits were all responsible for determining the biomechanical variables. This study reveals that hydrodynamic changes primarily induce mechanical damage in eutrophic species, whereas eutrophication triggers mechanical damage in sensitive species.


Assuntos
Monitoramento Ambiental , Eutrofização , Hidrodinâmica , Potamogetonaceae/fisiologia , Traqueófitas/fisiologia , China , Lagos
14.
PLoS One ; 10(6): e0129050, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061396

RESUMO

The main objective of this paper is to study the characteristics of flow-induced noise in high pressure reducing valve (HPRV) and to provide some guidance for noise control. Based on computational fluid dynamics (CFD), numerical method was used to compute flow field. Ffowcs Williams and Hawkings Model was applied to obtain acoustic signals. The unsteady flow field shows that noise sources are located at the bottom of plug for valve without perforated plate, and noise sources are behind the plate for valve with perforated plate. Noise directivity analysis and spectrum characteristics indicate that the perforated plate could help to reduce noise effectively. Inlet pressure has great effects on sound pressure level (SPL). The higher inlet pressure will lead to larger SPL at high frequency. When the maximum Ma is close to 1, SPL at low frequency becomes very high.


Assuntos
Acústica/instrumentação , Simulação por Computador , Hidrodinâmica , Modelos Teóricos , Ruído , Pressão
15.
Genetica ; 143(5): 545-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26092369

RESUMO

As an endemic species of freshwater gastropods in China, Bellamya quadrata plays an important role in ecosystem service provision and commercial importance. However, the species is overharvested and its natural habitats are under severe threat due to fragmentation and loss. To estimate the genetic diversity and population structure of B. quadrata, 285 individuals from eight lake populations across middle and lower Yangtze River were sampled. Seven microsatellite loci were genotyped. Our results showed that (i) the genetic diversity of B. quadrata was high in most of the studied populations, yet effective population sizes appear to be rather small in some populations; (ii) low levels of genetic differentiation exists among populations but gene flow was generally high; (iii) no clear geographic or genetic structure was observed in the studied region, implying mechanisms (zoochoric dispersal and anthropogenic translocations) that enhance dispersal and gene flow have promoted population connectivity. However, the comparatively high genetic diversity of B. quadrata could be attributed to a lag phase, suggesting that the genetic diversity of this species may be lost in the future and the priorities for conservation of B. quadrata are necessary.


Assuntos
Gastrópodes/genética , Animais , China , Fluxo Gênico , Deriva Genética , Variação Genética , Genética Populacional , Genótipo , Lagos , Repetições de Microssatélites , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...