Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Agric Food Chem ; 72(18): 10339-10354, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682702

RESUMO

The current study aimed to assess the effectiveness of pharmacological intervention with Platycodin D (PD), a critically active compound isolated from the roots of Platycodon grandiflorum, in mitigating cardiotoxicity in a murine model of type 2 diabetes-induced cardiac injury and in H9c2 cells in vitro. Following oral administration for 4 weeks, PD (2.5 mg/kg) significantly suppressed the elevation of fasting blood glucose (FBG) levels, improved dyslipidemia, and effectively inhibited the rise of the cardiac injury markers creatine kinase isoenzyme MB (CK-MB) and cardiac troponin T (cTnT). PD treatment could ameliorate energy metabolism disorders induced by impaired glucose uptake by activating AMPK protein expression in the DCM mouse model, thereby promoting the GLUT4 transporter and further activating autophagy-related proteins. Furthermore, in vitro experiments demonstrated that PD exerted a concentration-dependent increase in cell viability while also inhibiting palmitic acid and glucose (HG-PA)-stimulated H9c2 cytotoxicity and activating AMPK protein expression. Notably, the AMPK activator AICAR (1 mM) was observed to upregulate the expression of AMPK in H9c2 cells after high-glucose and -fat exposure. Meanwhile, we used AMPK inhibitor Compound C (20 µM) to investigate the effect of PD activation of AMPK on cells. In addition, the molecular docking approach was employed to dock PD with AMPK, revealing a binding energy of -8.2 kcal/mol and indicating a tight interaction between the components and the target. PD could reduce the expression of autophagy-related protein p62, reduce the accumulation of autophagy products, promote the flow of autophagy, and improve myocardial cell injury. In conclusion, it has been demonstrated that PD effectively inhibits cardiac injury-induced type 2 diabetes in mice and enhances energy metabolism in HG-PA-stimulated H9c2 cells by activating the AMPK signaling pathway. These findings collectively unveil the potential cardioprotective effects of PD via modulation of the AMPK signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Tipo 2 , Camundongos Endogâmicos C57BL , Platycodon , Saponinas , Transdução de Sinais , Triterpenos , Animais , Saponinas/farmacologia , Saponinas/química , Saponinas/administração & dosagem , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/administração & dosagem , Masculino , Transdução de Sinais/efeitos dos fármacos , Platycodon/química , Humanos , Linhagem Celular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Glucose/metabolismo
2.
Sci Total Environ ; 898: 165471, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451455

RESUMO

Elucidating the effect of fertigation on soil hydraulic parameters and water-solute transportation is fundamental to the design of farmland irrigation systems and their sustainable utilization. Few studies have focused on soil hydraulic parameters or water infiltration characteristics or how they are influenced by urea solution concentration. In this study, the clay loam and sandy loam in Yangling District of Shaanxi Province, China, were used as test soil, and experiments involving seven urea solution concentrations (0.2, 0.4, 0.6, 0.8, 1, 3, and 5 g/L) and a control treatment (0 g/L) were conducted to explore the influence of the various urea solution concentrations on soil hydraulic parameters and water infiltration characteristics. The results indicated that the cumulative infiltration and wetting front migration depth increased with urea solution concentration, as accurately estimated using the Kostiakov model and a power function, respectively. In addition, the coefficients of the Kostiakov model and the power function increased with urea solution concentration. Treatment with multiple concentrations of urea solution resulted in an increase in the volume of macro pores in the soil but a reduction in the volume of mesopores and micro pores in the soil, leading to increases in the saturated water content, saturated hydraulic conductivity, soil water diffusivity, and infiltration capacity and a reduction in the water-holding capacity of the soil. The effect of urea solute potential on the inhibition of soil water movement is small, and this inhibitory effect is far weaker than the improvement effect of the urea solution on soil structure, and hence enhance the soil water infiltration capacity. Our results increase the understanding of soil hydrological mechanisms and may be usefully applied for improving the management of fertigation.

3.
Materials (Basel) ; 16(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374526

RESUMO

The mechanical characteristics and mechanisms of rock failure involve complex rock mass mechanics problems involving parameters such as energy concentration, storage, dissipation, and release. Therefore, it is important to select appropriate monitoring technologies to carry out relevant research. Fortunately, infrared thermal imaging monitoring technology has obvious advantages in the experimental study of rock failure processes and energy dissipation and release characteristics under load damage. Therefore, it is necessary to establish the theoretical relationship between the strain energy and infrared radiation information of sandstone and to reveal its fracture energy dissipation and disaster mechanism. In this study, an MTS electro-hydraulic servo press was used to carry out uniaxial loading experiments on sandstone. The characteristics of dissipated energy, elastic energy, and infrared radiation during the damage process of sandstone were studied using infrared thermal imaging technology. The results show that (1) the transition of sandstone loading from one stable state to another occurs in the form of an abrupt change. This sudden change is characterized by the simultaneous occurrence of elastic energy release, dissipative energy surging, and infrared radiation count (IRC) surging, and it has the characteristics of a short duration and large amplitude variation. (2) With the increase in the elastic energy variation, the surge in the IRC of sandstone samples presents three different development stages, namely fluctuation (stage Ⅰ), steady rise (stage Ⅱ), and rapid rise (stage Ⅲ). (3) The more obvious the surge in the IRC, the greater the degree of local damage of the sandstone and the greater the range of the corresponding elastic energy change (or dissipation energy change). (4) A method of sandstone microcrack location and propagation pattern recognition based on infrared thermal imaging technology is proposed. This method can dynamically generate the distribution nephograph of tension-shear microcracks of the bearing rock and accurately evaluate the real-time process of rock damage evolution. Finally, this study can provide a theoretical basis for rock stability, safety monitoring, and early warning.

4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 596-601, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248590

RESUMO

Objective: To investigate the prevalence and common sites of severe foot pain among nurses, to define the risk factors of severe foot pain in nurses in tertiary hospital in China, and to construct a nomograph model for predicting individuals' risks for severe foot pain. Methods: Between August 2019 and December 2019, a stratified global sampling method was used to select 10691 nurses from 351 tertiary hospitals in China to investigate the incidence of severe foot pain among them. The variables that may affect the occurrence of severe foot pain were analyzed by single factor analysis to identify the influencing factors of severe foot pain in nurses. Furthermore, the independent risk factors of severe foot pain were analyzed by stepwise logistic regression analysis. The statistically significant factors identified in the multivariate regression analysis were incorporated into the nomograph prediction model. The predictive performance of the nomograph was measured by the consistency index (C-index) and calibrated with 1000 Bootstrap samples. Results: A total of 3419 nurses out of the 10691 had foot pain, resulting in an incidence of 31.98%. The incidence of severe pain (VAS score 7-10) was 2.27% (243 of 10691). The locations of severe pain were more commonly found in the soles and heels of both feet. Six factors, including age, education, the material of the work shoes, comfortableness of the work shoes, number of complications, and foot injure history, were incorporated in the nomograph predicting model. The C-index value was 0.706 and the standard curve fitted well with the calibrated prediction curve. Conclusion: The risk prediction model constructed in this study showed sound performance in predicting the risk of severe foot pain in nurses, and all the indicators involved are simple and the relevant data are easily obtained. The model can provide reference for preventing severe foot pain in nurses.


Assuntos
Enfermeiras e Enfermeiros , Dor , Humanos , Centros de Atenção Terciária , Dor/epidemiologia , China/epidemiologia
5.
Food Funct ; 14(1): 74-86, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36504256

RESUMO

In this work, we investigated the ameliorative effects of platycodin D (PD), a major active chemical ingredient isolated from the roots of Platycodon grandiflorum (PG), on high-fat diet (HFD)/streptozotocin (STZ)-induced type 2 diabetes (T2D) mice. PD treatment (2.5 and 5.0 mg kg-1) improved HFD-induced body weight gain. PD administration also decreased the fasting blood glucose (FBG) level and improved glucose and insulin tolerance levels. These data collectively showed that PD could maintain glucose homeostasis. In addition, the diabetic mice with PD treatment also showed fewer pathological changes in liver tissues and improved hepatic functional indexes with respect to the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and recovery of abnormal liver function caused by T2D. Except for these, PD decreased the decomposition of hepatic glycogen. The results from western blot analysis showed that PD treatment might regulate the hepatic gluconeogenesis pathway with the increased phosphorylation/expression of AMPK and decreased expressions of PCK1 and G6Pase. In the aspect of lipid metabolism, PD decreased the whole-body lipid levels, including total cholesterol (TC), triglycerides (TG), and high-density lipoprotein (HDL), and reduced the hepatic fat accumulation induced by T2D through the AMPK/ACC/CPT-1 fatty acid anabolism pathway. In addition, the results of molecular docking showed that PD may have a potential direct effect on AMPK and other key glycolipid metabolism proteins. To summarize, PD modulation of hepatic glycolipid metabolism abnormalities is promising for T2D therapy in the future.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Glucose/metabolismo , Hiperglicemia/metabolismo , Fígado/metabolismo , Simulação de Acoplamento Molecular , Estreptozocina
6.
J Ethnopharmacol ; 304: 116063, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36567037

RESUMO

ETHNIC PHARMACOLOGICAL RELEVANCE: Glaucoma is the second most common blindness in the world, which seriously affects the life quality of patients. Traditional Chinese Medicines (TCM), are important plant materials, widely used for ocular disease all over the world. With the help of modern ophthalmic detection technology, TCM has gradually become an important content in the field of ophthalmology, characterized by more targets and lower toxicity. AIM OF THIS REVIEW: This review presents an overview of the pathogenesis of glaucoma in both modern and traditional medicines, and summarizes the therapeutic effect of TCM on glaucoma including their formula, crude drugs and active components, and also the application of acupuncture. METHODS: A collection and collation of relevant scientific articles from different scientific databases was performed regarding TCM and its application on glaucoma. The therapeutic effects of TCM were summarized and analyzed according to the existing experimental and clinical researches, while the GSE26299 database were employed to screen bioinformatics analysis of glaucoma based on the GEO database chip. RESULTS: There were many positive signs showing that TCM could increase the survival rate of retinal ganglion cells, which may be related to its regulation of microcirculation, oxidative stress, and the immune system. Hence, TCM plays an active role in treating glaucoma. In addition, the bioinformatics analysis predicted that the pathogenesis of glaucoma might be related to p53, MAPK, NF-κB signal, as well as other pathways by KEGG analysis, and the results from bioinformatics analysis predicted that PIK3R6, FGF1, and TYRP1 etc. CONCLUSION: TCM exerts definite effects on preventing and treating ocular disease. It could alleviate and treat glaucoma in various ways. The differentiation syndrome should thus be taken as the basis to propose appropriate treatment options of TCM making their application on glaucoma more popular.


Assuntos
Terapia por Acupuntura , Medicamentos de Ervas Chinesas , Glaucoma , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/uso terapêutico , Glaucoma/tratamento farmacológico , Biologia Computacional
7.
Am J Chin Med ; 51(2): 407-424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36575152

RESUMO

Previous reports have confirmed that crude saponins (ginsenosides) in Panax ginseng have a preventive effect on chemotherapy-induced intestinal injury. However, the protective effects and possible mechanisms of ginsenoside Re (G-Re, a maker saponin in ginseng) against chemotherapy-induced intestinal damage have not been thoroughly studied. In this work, a series of experiments in vivo and in vitro on the intestinal toxicity caused by cisplatin have been designed to verify the improvement effect of G-Re, focusing on the levels of Wnt3a and [Formula: see text]-catenin. Mice were intragastric with G-Re for 10 days, and intestinal injury was induced by intraperitoneal administration of cisplatin at a dose of 20 mg/kg. Histopathology, gastrointestinal digestive enzyme activities, inflammatory cytokines, and oxidative status were evaluated to investigate the protective effect. Furthermore, in IEC-6 cells, G-Re statistically reverses cisplatin-induced oxidative damage and cytotoxicity. The TUNEL and Hoechst 33258 staining demonstrated that G-Re possesses protective effects in cisplatin-induced apoptosis. Additionally, pretreatment with G-Re significantly alleviated the apoptosis via inhibition of over-expressions of B-associated X (Bax), as well as the caspase family members, such as caspase 3 and 9, respectively, in vivo and in vitro. Notably, western blotting results showed that G-Re treatment decreased Wnt3a, Glycogen synthase kinase [Formula: see text] (GSK-[Formula: see text]), and [Formula: see text]-catenin expression, suggesting that nuclear accumulation of [Formula: see text]-catenin was attenuated, thereby inhibiting the activation of GSK-[Formula: see text]-dependent Wnt/[Formula: see text]-catenin signaling, which was consistent with our expected results. Therefore, the above evidence suggested that G-Re may be a candidate drug for the treatment of intestinal injury.


Assuntos
Antineoplásicos , Ginsenosídeos , Saponinas , Camundongos , Animais , Ginsenosídeos/farmacologia , Cisplatino/toxicidade , Via de Sinalização Wnt , Glicogênio Sintase Quinase 3 beta/metabolismo , Saponinas/farmacologia , Antineoplásicos/farmacologia , Cateninas/metabolismo , Cateninas/farmacologia , beta Catenina/metabolismo
8.
Chin J Nat Med ; 20(9): 669-678, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36162952

RESUMO

Diabetes-associated liver injury becomes a dominant hepatopathy, leading to hepatic failure worldwide. The current study was designed to evaluate the ameliorative effects of ginsenoside Rh1 (G-Rh1) on liver injury induced by T2DM. A T2DM model was established using C57BL/6 mice through feeding with HFD followed by injection with streptozotocin at 100 mg·kg-1.. Then the mice were continuously administered with G-Rh1 (5 and 10 mg·kg-1), to explore the protective effects of G-Rh1 against liver injury. Results showed that G-Rh1 exerted significant effects on maintaining the levels of FBG and insulin, and ameliorated the increased levels of TG, TC and LDL-C induced by T2DM. Moreover, apoptosis in liver tissue was relieved by G-Rh1, according to histological analysis. Particularly, in diabetic mice, it was observed that not only the increased secretion of G6Pase and PEPCK in the gluconeogenesis pathway, but also inflammatory factors including NF-κB and NLRP3 were suppressed by G-Rh1 treatment. Furthermore, the underlying mechanisms by which G-Rh1 exhibited ameliorative effects was associated with its capacity to inhibit the activation of the Akt/FoxO1 signaling pathway induced by T2DM. Taken together, our preliminary study demonstrated the potential mechnism of G-Rh1 in protecting the liver against T2DM-induced damage.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , LDL-Colesterol/metabolismo , LDL-Colesterol/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/farmacologia , Ginsenosídeos , Insulina/metabolismo , Fígado , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estreptozocina
9.
J Dermatolog Treat ; 33(4): 2129-2136, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34060412

RESUMO

BACKGROUND: Psoriasis is chronic incurable skin inflammation. The anti-inflammatory properties of mesenchymal stem cells (MSCs) have been put forward to be involved in several inflammatory diseases. However, little was known about the role of human adipose tissue-derived stem cells (hAD-MSCs) in psoriasis. OBJECTIVE: We sought to explore the feasibility of using hAD-MSCs infusion as a therapeutic approach in psoriatic mice. METHODS: We constructed the psoriasis-like model by IMQ implication, treated with hAD-MSCs by subcutaneous injection. To evaluate the efficacy, we examined the histology, CD45 and ROS positive cells by HE and flow cytometry respectively. We also tested the key cytokines with PCR. Moreover, to achieve a better therapeutic effect, we treated the model by combing with vitamin E application. RESULTS: We found that the classic histological symptoms of psoriasis were relieved after treatment with hAD-MSCs, also, the splenic index, the infiltration of immune cells and several pro-inflammatory cytokines were decreased. Interestingly, we also found that hAD-MSCs could inhibit ROS generation. Moreover, the combination therapy of hAD-MSCs and vitamin E could promote the curative effect with greater ROS inhibition. CONCLUSION: These results suggested that hAD-MSCs could be useful for treating psoriasis by negatively regulating ROS.


Assuntos
Inflamação , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Psoríase , Espécies Reativas de Oxigênio , Tecido Adiposo/citologia , Animais , Citocinas , Dermatite/metabolismo , Dermatite/terapia , Modelos Animais de Doenças , Estudos de Viabilidade , Humanos , Inflamação/metabolismo , Inflamação/terapia , Injeções Subcutâneas , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Psoríase/metabolismo , Psoríase/terapia , Espécies Reativas de Oxigênio/metabolismo , Vitamina E/uso terapêutico
10.
Food Funct ; 12(23): 12142-12158, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34788354

RESUMO

Aging and aging-related metabolic complications are global problems that seriously threaten public health. Taxifolin (TAX) is a novel health food and has been widely proved to have a variety of biological activities used in food and medicine. However, the delayed effect of TAX on the aging process has not been investigated. The purpose of this study is to explore the role of TAX as a natural active substance on aging brain tissue induced by D-galactose (D-Gal) and to determine the effect of supplementing TAX on the metabolism of the intestinal flora in aging bodies. The aging model was established by intraperitoneal injection of D-Gal (800 mg kg-1) once per 3 days for 12 weeks, and TAX (20 and 40 mg kg-1) was administered daily by oral gavage after 6 weeks of induction with D-Gal. After testing aging mice in an eight-arm maze, the results showed that TAX treatment significantly restored spatial learning and memory impairment. Moreover, long-term D-Gal treatment incited cholinergic dysfunction of aging mice, and H&E staining revealed obvious histopathological damage and structural disorder in the hippocampus of mouse brain tissue, while TAX treatment significantly reversed these changes. Importantly, supplementing with TAX significantly mitigated oxidative stress injury by alleviating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) while increasing antioxidant enzymes. Furthermore, TAX decreased the apoptosis of the aging brain by regulating the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and activating nuclear factor-erythroid 2-related factor 2 (Nrf2), nuclear heme oxygenase-1 (HO-1), and NADH dehydrogenase quinone 1 (NQO1) to maximally moderate the oxidative stress injury that occurred after D-Gal induction. In addition, 16S rDNA analysis revealed that TAX treatment decelerated the D-gal-induced aging process by regulating the composition of the intestinal flora and abundance of beneficial bacteria, including Enterorhabdus, Clostridium, Bifidobacterium, and Parvibacter. In conclusion, the results of this study demonstrated that TAX alleviated oxidative stress injury in mice aged by D-Gal and also confirmed that TAX improved the aging process by regulating intestinal microbes, which provides the possibility of prevention and treatment for aging and metabolic disorders through the potential food health factors.


Assuntos
Envelhecimento/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/análogos & derivados , Animais , Galactose/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Quercetina/farmacologia
11.
Fitoterapia ; 155: 105038, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34600094

RESUMO

Phenolic bisabolane-type sesquiterpenoids (PBS) represent a rare class of natural products with diverse biological activities. In this study, chemical investigations of the fungus Aspergillus flavipes 297 resulted in the isolation and identification of seven PBS, including a pair of new enantiomers (+)-1a and (-)-1b, a new derivative 2, and five previously reported ones 3-7. The chemical structures of the isolated PBS were determined by extensive NMR and HRESIMS spectroscopic analysis. The absolute configurations of the separated enantiomers (+)-1a and (-)-1b were solved by comparison of the experimental ECD spectra with those of the TDDFT-ECD calculated spectra. The new compounds 1 and 2 represent rare cases of PBS bearing a methylsulfinyl group, which was distinct from the commonly-observed PBS structurally. All the isolated compounds 1-7 were evaluated their antimicrobial and cytotoxic activities. As a result, the tested compounds showed selective antimicrobial activity against several pathogenic bacteria and fungi with the MIC (minimum inhibiting concentrations) values ranging from 2 to 64 µg/mL. Moreover, enantiomers (+)-1a and (-)-1b, together with compound 2, exhibited promising cytotoxicity against MKN-45 and HepG2 cell lines, respectively, indicating that the methylsulfinyl substituent enhanced cytotoxicity to a certain degree.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Aspergillus/química , Sesquiterpenos Monocíclicos/farmacologia , Fenóis/farmacologia , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , China , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Sesquiterpenos Monocíclicos/isolamento & purificação , Fenóis/isolamento & purificação , Água do Mar/microbiologia
12.
Brain Res ; 1772: 147663, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555415

RESUMO

Neuropathic pain is a common complication of diabetes mellitus with poorly relieved by conventional analgesics. Metformin, a first-line drug for type 2 diabetes, reduces blood glucose by activating adenosine monophosphate protein kinase (AMPK) signalling system. However, the effect of Metformin on diabetic neuropathic pain is still unknown. In the present study, we showed that Metformin was capable of attenuating diabetes induced mechanical allodynia, and the analgesia effect could be blocked by Compound C (an AMPK inhibitor). Importantly, Metformin enhanced the phosphorylation level of AMPK in L4-6 DRGs of diabetic rats but not affect the expression of total AMPK. Intrathecal injection of AICAR (an AMPK agonist) could activate AMPK and alleviate the mechanical allodynia of diabetic rats. Additionally, phosphorylated AMPK and NF-κB was co-localized in small and medium neurons of L4-6 DRGs. Interestingly, the regulation of NF-κB in diabetic rats was obviously reduced when AMPK was activated by AICAR. Notably, Metformin could decrease NF-κB expression in L4-6 DRGs of diabetic rats, but the decrease was blocked by Compound C. In conclusion, Metformin alleviates diabetic mechanical allodynia via activation of AMPK signaling pathway in L4-6 DRGs of diabetic rats, which might be mediated by the downregulation of NF-κB, and this providing certain basis for Metformin to become a potential drug in the clinical treatment of diabetic neuropathic pain.


Assuntos
Neuropatias Diabéticas/tratamento farmacológico , Gânglios Espinais/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metformina/farmacologia , NF-kappa B/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Masculino , Ratos , Ratos Sprague-Dawley , Ribonucleotídeos/farmacologia
14.
Transl Oncol ; 14(7): 101088, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33882369

RESUMO

BACKGROUND: The lncRNA colorectal neoplasia differentially expressed (lncRNA CRNDE) has been reported to play a pivotal role in various cancers. However, the expression and function of CRNDE in pancreatic cancer remain unclear. The objective of this study was to investigate the effects of CRNDE on pancreatic cancer and the underlying mechanisms. METHODS: The expression of CRNDE in pancreatic cancer tissues and cell lines was determined by RT-qPCR. Proliferation and angiogenesis were detected by MTT, colony formation, transwell and tube formation assays in vitro and in vivo. ELISA assay was used to detect the secretion of VEGFA. IHC was performed to test the expression levels of Ki67 and CD31. The binding sites between CRNDE, CDKN2D and miR-451a were predicted by bioinformatics analysis. Dual luciferase reporter and RNA immunoprecipitation assays were conducted to confirm the interaction with each other. RESULTS: The results showed that CRNDE was significantly up-regulated in pancreatic cancer tissues as well as cell lines. CRNDE overexpression promoted the progression and angiogenesis of pancreatic cancer cells in vitro and in vivo. Moreover, we identified that CRNDE functioned as a sponge for miR-451a and CRNDE overexpression inhibited the expression of miR-451a. Furthermore, we confirmed that miR-451a directly interacted with CDKN2D and negatively regulated CDKN2D expression. In addition, CRNDE was found to positively regulate CDKN2D expression and mediate pancreatic cancer cell proliferation and angiogenesis through miR-451a/CDKN2D axis. CONCLUSION: CRNDE modulates cell proliferation and angiogenesis via miR-451a/CDKN2D axis in pancreatic cancer, which provides a potential therapeutic target for pancreatic cancer treatment.

16.
J Pain Res ; 13: 3013-3022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33239909

RESUMO

BACKGROUND: Inflammatory pain is the most common type of pain treated clinically. However, the currently available treatments for inflammatory pain have limited effects and can cause severe side effects. The aim of this study is to describe the effect of miRNA-485-5p on osteoarthritis-related inflammatory pain. METHODS: Paw withdrawal threshold (PWT) of rats was measured by von Frey filaments. The expressions of miRNA-485-5p and acid-sensing ion channel 1 (ASIC1) in the dorsal root ganglion (DRG) were measured with real-time quantitative PCR and Western blotting analysis. Fluorescent in situ hybridization and fluorescent immunohistochemistry were employed to detect expression of miRNA-485-5p, acid-sensing ion channelASIC1 and co-location of miRNA-485-5p with ASIC1. RESULTS: The PWT of rats was significantly reduced after complete Freund's adjuvant (CFA) injection. The miRNA-485-5p expression level clearly decreased while the ASIC1 expression level was upregulated in the L4-6 dorsal root ganglion (DRG) of CFA rats. MiRNA-485-5p and ASIC1 were co-expressed in the same DRG cells of CFA rats. Amiloride, an inhibitor of ASIC1, clearly increased the PWT of CFA rats. Further, miRNA-485-5p agomir reversed the upregulation of ASICI1 and alleviated CFA-induced mechanical hypersensitivity of CFA rats. CONCLUSION: These results suggest that reduced expression of miRNA-485-5p contributes to inflammatory pain through upregulating ASIC1 expression, implying a promising strategy for pain therapy.

17.
World J Clin Cases ; 8(20): 4908-4916, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33195660

RESUMO

BACKGROUND: The global pandemic of coronavirus disease 2019 pneumonia poses a particular challenge to the emergency surgical treatment of elderly patients with high-risk acute abdominal diseases. Elderly patients are a high-risk group for surgical treatment. If the incarceration of gallstones cannot be relieved, emergency surgery is unavoidable. CASE SUMMARY: We report an 89-year-old male patient with acute gangrenous cholecystitis and septic shock induced by incarcerated cholecystolithiasis. He had several coexisting, high-risk underlying diseases, had a history of radical gastrectomy for gastric cancer, and was taking aspirin before the operation. Nevertheless, he underwent emergency laparoscopic cholecystectomy, with maintenance of postoperative heart and lung function, successfully recovered, and was discharged on day 8 after the operation. CONCLUSION: Emergency surgery for elderly patients with acute abdominal disease is safe and feasible during the coronavirus disease 2019 pandemic, the key is to abide strictly by the hospital's epidemic prevention regulations, fully implement the epidemic prevention procedure for emergency surgery, fully prepare before the operation, accurately perform the operation, and carefully manage the patient postoperatively.

18.
Kidney Int ; 98(1): 219-227, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32327202

RESUMO

Although the respiratory and immune systems are the major targets of Coronavirus Disease 2019 (COVID-19), acute kidney injury and proteinuria have also been observed. Currently, detailed pathologic examination of kidney damage in critically ill patients with COVID-19 has been lacking. To help define this we analyzed kidney abnormalities in 26 autopsies of patients with COVID-19 by light microscopy, ultrastructural observation and immunostaining. Patients were on average 69 years (19 male and 7 female) with respiratory failure associated with multiple organ dysfunction syndrome as the cause of death. Nine of the 26 showed clinical signs of kidney injury that included increased serum creatinine and/or new-onset proteinuria. By light microscopy, diffuse proximal tubule injury with the loss of brush border, non-isometric vacuolar degeneration, and even frank necrosis was observed. Occasional hemosiderin granules and pigmented casts were identified. There were prominent erythrocyte aggregates obstructing the lumen of capillaries without platelet or fibrinoid material. Evidence of vasculitis, interstitial inflammation or hemorrhage was absent. Electron microscopic examination showed clusters of coronavirus-like particles with distinctive spikes in the tubular epithelium and podocytes. Furthermore, the receptor of SARS-CoV-2, ACE2 was found to be upregulated in patients with COVID-19, and immunostaining with SARS-CoV nucleoprotein antibody was positive in tubules. In addition to the direct virulence of SARS-CoV-2, factors contributing to acute kidney injury included systemic hypoxia, abnormal coagulation, and possible drug or hyperventilation-relevant rhabdomyolysis. Thus, our studies provide direct evidence of the invasion of SARSCoV-2 into kidney tissue. These findings will greatly add to the current understanding of SARS-CoV-2 infection.


Assuntos
Infecções por Coronavirus/patologia , Rim/ultraestrutura , Pneumonia Viral/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias
19.
Zhongguo Zhong Yao Za Zhi ; 45(2): 312-320, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-32237313

RESUMO

Gastrodin(GAS) and p-hydroxybenzyl alcohol(HBA) are extracts of dried tubers of Gastrodia elata, which is the material basis for its efficacy and belongs to phenolic compounds. Modern pharmacology studies have shown that they have significant effects on central nervous system diseases, such as insomnia, convulsions, depression, ischemic stroke, anxiety, and cognitive impairment, and these diseases are closely related to neurotransmitters and cytokines. This paper described various mechanisms of GAS and HBA monomer components on the central nervous system. They alleviate hippocampal neuronal toxicity mainly by regulating a variety of neurotransmitters, such as acetylcholine, glutamic acid(GLU), γ-aminobutyric acid(GABA), serotonin(5-HT), dopamine(DA), norepinephrine(NE), 5-indoleacetic acid(5-HIAA), high vanillic acid(HVA) and dihydroxyphenylacetic acid(DOPAC), pro-inflammatory cell growth factors, such as IL-1ß, IL-6 and TNF-α and relevant receptor functions, and exert neuropharmacological effects by effectively increasing mRNA expressions of brain neurotrophic factors, such as BDNF and GDNF, and further inhibiting the apoptosis of damaged neurons. This paper summarized various mechanisms on the central nervous system, which provides a scientific basis for the further research of the neuropharmacological mechanism of GAS and HBA and the development of new drugs and functional food.


Assuntos
Álcoois Benzílicos/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Glucosídeos/farmacologia , Extratos Vegetais/farmacologia , Gastrodia/química , Humanos
20.
Nat Prod Res ; 34(16): 2328-2331, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30580589

RESUMO

Gastrodigenin, also known as 4-hydroxybenzyl alcohol (HBA), is one of the main components of Gastrodia elata, which is a perfect lead compound of natural products. In order to get new active compounds, we modified the structure of HBA through esterification with carboxylic acid, and got a series of derivatives in which 4-hydroxybenzyl alcohol 2-naphthoate (NHBA) showed stronger antidepressant activity than HBA. In this paper, we firstly evaluated the antidepressant activity of NHBA by tail suspension test (TST) and forced swimming test (FST). Then, we carried out the biochemical assay and western blot to determine its mechanism. The results displayed that NHBA could increase the content of serotonin, dopamine, norepinephrine, γ-aminobutyric acid, brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in mice brain. It suggested that NHBA exhibited an antidepressant-like effect through monoaminergic system, GABAergic system and BDNF/TrkB signaling pathways.


Assuntos
Antidepressivos/farmacologia , Álcoois Benzílicos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antidepressivos/química , Álcoois Benzílicos/química , Monoaminas Biogênicas/metabolismo , Gastrodia/química , Elevação dos Membros Posteriores , Camundongos , Natação , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...