Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(8): 080202, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457709

RESUMO

Quantum measurements based on mutually unbiased bases (MUBs) play crucial roles in foundational studies and quantum information processing. It is known that there exist inequivalent MUBs, but little is known about their operational distinctions, not to say experimental demonstration. In this Letter, by virtue of a simple estimation problem, we experimentally demonstrate the operational distinctions between inequivalent triples of MUBs in dimension 4 based on high-precision photonic systems. The experimental estimation fidelities coincide well with the theoretical predictions with only 0.16% average deviation, which is 25 times less than the difference (4.1%) between the maximum estimation fidelity and the minimum estimation fidelity. Our experiments clearly demonstrate that inequivalent MUBs have different information extraction capabilities and different merits for quantum information processing.

2.
Phys Rev Lett ; 128(2): 020502, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089730

RESUMO

Verifying the correct functioning of quantum gates is a crucial step toward reliable quantum information processing, but it becomes an overwhelming challenge as the system size grows due to the dimensionality curse. Recent theoretical breakthroughs show that it is possible to verify various important quantum gates with the optimal sample complexity of O(1/ε) using local operations only, where ε is the estimation precision. In this Letter, we propose a variant of quantum gate verification (QGV) that is robust to practical gate imperfections and experimentally realize efficient QGV on a 2-qubit controlled-not gate and a 3-qubit Toffoli gate using only local state preparations and measurements. The experimental results show that, by using only 1600 and 2600 measurements on average, we can verify with 95% confidence level that the implemented controlled-not gate and Toffoli gate have fidelities of at least 99% and 97%, respectively. Demonstrating the superior low sample complexity and experimental feasibility of QGV, our work promises a solution to the dimensionality curse in verifying large quantum devices in the quantum era.

3.
Phys Rev Lett ; 124(6): 060502, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109089

RESUMO

Antiparallel spins are superior in orienteering to parallel spins. This intriguing phenomenon is tied to entanglement associated with quantum measurements rather than quantum states. Using photonic systems, we experimentally realize the optimal orienteering protocols based on parallel spins and antiparallel spins, respectively. The optimal entangling measurements for decoding the direction information from parallel spins and antiparallel spins are realized using photonic quantum walks, which is a useful idea that is of wide interest in quantum information processing and foundational studies. Our experiments clearly demonstrate the advantage of antiparallel spins over parallel spins in orienteering. In addition, entangling measurements can extract more information than local measurements even if no entanglement is present in the quantum states.

4.
Phys Rev Lett ; 123(26): 260504, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951437

RESUMO

Efficient verification of pure quantum states in the adversarial scenario is crucial to many applications in quantum information processing, such as blind measurement-based quantum computation and quantum networks. However, little is known about this topic so far. Here, we establish a general framework for verifying pure quantum states in the adversarial scenario and clarify the resource cost. Moreover, we propose a simple and general recipe to constructing efficient verification protocols for the adversarial scenario from protocols for the nonadversarial scenario. With this recipe, arbitrary pure states can be verified in the adversarial scenario with almost the same efficiency as in the nonadversarial scenario. Many important quantum states can be verified in the adversarial scenario using local projective measurements with unprecedented high efficiencies.

5.
Phys Rev Lett ; 120(13): 130502, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694167

RESUMO

The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.

6.
Nat Commun ; 9(1): 1414, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650977

RESUMO

Collective measurements on identically prepared quantum systems can extract more information than local measurements, thereby enhancing information-processing efficiency. Although this nonclassical phenomenon has been known for two decades, it has remained a challenging task to demonstrate the advantage of collective measurements in experiments. Here, we introduce a general recipe for performing deterministic collective measurements on two identically prepared qubits based on quantum walks. Using photonic quantum walks, we realize experimentally an optimized collective measurement with fidelity 0.9946 without post selection. As an application, we achieve the highest tomographic efficiency in qubit state tomography to date. Our work offers an effective recipe for beating the precision limit of local measurements in quantum state tomography and metrology. In addition, our study opens an avenue for harvesting the power of collective measurements in quantum information-processing and for exploring the intriguing physics behind this power.

7.
Phys Rev Lett ; 120(3): 030404, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400536

RESUMO

A quantum measurement is Fisher symmetric if it provides uniform and maximal information on all parameters that characterize the quantum state of interest. Using (complex projective) 2-designs, we construct measurements on a pair of identically prepared quantum states that are Fisher symmetric for all pure states. Such measurements are optimal in achieving the minimal statistical error without adaptive measurements. We then determine all collective measurements on a pair that are Fisher symmetric for the completely mixed state and for all pure states simultaneously. For a qubit, these measurements are Fisher symmetric for all states. The minimal optimal measurements are tied to the elusive symmetric informationally complete measurements, which reflects a deep connection between local symmetry and global symmetry. In the study, we derive a fundamental constraint on the Fisher information matrix of any collective measurement on a pair, which offers a useful tool for characterizing the tomographic efficiency of collective measurements.

8.
Phys Rev Lett ; 117(12): 120404, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27689258

RESUMO

Quasiprobability representations, such as the Wigner function, play an important role in various research areas. The inevitable appearance of negativity in such representations is often regarded as a signature of nonclassicality, which has profound implications for quantum computation. However, little is known about the minimal negativity that is necessary in general quasiprobability representations. Here we focus on a natural class of quasiprobability representations that is distinguished by simplicity and economy. We introduce three measures of negativity concerning the representations of quantum states, unitary transformations, and quantum channels, respectively. Quite surprisingly, all three measures lead to the same representations with minimal negativity, which are in one-to-one correspondence with the elusive symmetric informationally complete measurements. In addition, most representations with minimal negativity are automatically covariant with respect to the Heisenberg-Weyl groups. Furthermore, our study reveals an interesting tradeoff between negativity and symmetry in quasiprobability representations.

9.
Phys Rev Lett ; 116(7): 070403, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26943513

RESUMO

We propose a general framework for constructing universal steering criteria that are applicable to arbitrary bipartite states and measurement settings of the steering party. The same framework is also useful for studying the joint measurement problem. Based on the data-processing inequality for an extended Rényi relative entropy, we then introduce a family of steering inequalities, which detect steering much more efficiently than those inequalities known before. As illustrations, we show unbounded violation of a steering inequality for assemblages constructed from mutually unbiased bases and establish an interesting connection between maximally steerable assemblages and complete sets of mutually unbiased bases. We also provide a single steering inequality that can detect all bipartite pure states of full Schmidt rank. In the course of study, we generalize a number of results intimately connected to data-processing inequalities, which are of independent interest.

10.
Sci Rep ; 6: 22025, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911250

RESUMO

We investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering party. In the simplest nontrivial scenario of two projective measurements, we solve this problem completely by virtue of the connection between the steering problem and the joint-measurement problem. A necessary and sufficient criterion is derived together with a simple geometrical interpretation. Our study shows that a Bell-diagonal state is steerable by two projective measurements iff it violates the Clauser-Horne-Shimony-Holt (CHSH) inequality, in sharp contrast with the strict hierarchy expected between steering and Bell nonlocality. We also introduce a steering measure and clarify its connections with concurrence and the volume of the steering ellipsoid. In particular, we determine the maximal concurrence and ellipsoid volume of Bell-diagonal states that are not steerable by two projective measurements. Finally, we explore the steerability of Bell-diagonal states under three projective measurements. A simple sufficient criterion is derived, which can detect the steerability of many states that are not steerable by two projective measurements. Our study offers valuable insight on steering of Bell-diagonal states as well as the connections between entanglement, steering, and Bell nonlocality.

11.
Phys Rev Lett ; 116(4): 040501, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26871314

RESUMO

The Wigner function provides a useful quasiprobability representation of quantum mechanics, with applications in various branches of physics. Many nice properties of the Wigner function are intimately connected with the high symmetry of the underlying operator basis composed of phase point operators: any pair of phase point operators can be transformed to any other pair by a unitary symmetry transformation. We prove that, in the discrete scenario, this permutation symmetry is equivalent to the symmetry group being a unitary 2 design. Such a highly symmetric representation can only appear in odd prime power dimensions besides dimensions 2 and 8. It suffices to single out a unique discrete Wigner function among all possible quasiprobability representations. In the course of our study, we show that this discrete Wigner function is uniquely determined by Clifford covariance, while no Wigner function is Clifford covariant in any even prime power dimension.

12.
Sci Rep ; 5: 14317, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26392075

RESUMO

The existence of observables that are incompatible or not jointly measurable is a characteristic feature of quantum mechanics, which lies at the root of a number of nonclassical phenomena, such as uncertainty relations, wave--particle dual behavior, Bell-inequality violation, and contextuality. However, no intuitive criterion is available for determining the compatibility of even two (generalized) observables, despite the overarching importance of this problem and intensive efforts of many researchers. Here we introduce an information theoretic paradigm together with an intuitive geometric picture for decoding incompatible observables, starting from two simple ideas: Every observable can only provide limited information and information is monotonic under data processing. By virtue of quantum estimation theory, we introduce a family of universal criteria for detecting incompatible observables and a natural measure of incompatibility, which are applicable to arbitrary number of arbitrary observables. Based on this framework, we derive a family of universal measurement uncertainty relations, provide a simple information theoretic explanation of quantitative wave--particle duality, and offer new perspectives for understanding Bell nonlocality, contextuality, and quantum precision limit.

13.
Phys Rev Lett ; 107(2): 020404, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21797584

RESUMO

Quantum-state reconstruction on a finite number of copies of a quantum system with informationally incomplete measurements, as a rule, does not yield a unique result. We derive a reconstruction scheme where both the likelihood and the von Neumann entropy functionals are maximized in order to systematically select the most-likely estimator with the largest entropy, that is, the least-bias estimator, consistent with a given set of measurement data. This is equivalent to the joint consideration of our partial knowledge and ignorance about the ensemble to reconstruct its identity. An interesting structure of such estimators will also be explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...