Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406909, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701043

RESUMO

We report a series of coordination cages that incorporate peptide chains at their vertices, prepared through subcomponent self-assembly. Three distinct heterochiral tripeptide subcomponents were incorporated, each exhibiting an L-D-L stereoconfiguration. Through this approach, we prepared and characterized three tetrahedral metal-peptide cages that incorporate thiol and methylthio groups. The gelation of these cages was probed through the binding of additional metal ions, with the metal-peptide cages acting as junctions, owing to the presence of sulfur atoms on the peripheral peptides. Gels were obtained with cages bearing cysteine at the C-terminus. Our strategy for developing functional metal-coordinated supramolecular gels with a modular design may result in the development of materials useful for chemical separations or drug delivery.

2.
J Am Chem Soc ; 146(4): 2370-2378, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251968

RESUMO

The use of copper(I) in metal-organic assemblies leads readily to the formation of simple grids and helicates, whereas higher-order structures require complex ligand designs. Here, we report the clean and selective syntheses of two complex and structurally distinct CuI12L8 frameworks, 1 and 2, which assemble from the same simple triaminotriptycene subcomponent and a formylpyridine around the CuI templates. Both represent new structure types. In T-symmetric 1, the copper(I) centers describe a pair of octahedra with a common center but whose vertices are offset from each other, whereas in D3-symmetric 2, the metal ions form a distorted hexagonal prism. The syntheses of these architectures illustrate how more intricate CuI-based complexes can be prepared via subcomponent self-assembly than has been possible to date through consideration of the interplay between the subcomponent geometry and solvent and electronic effects.

3.
J Am Chem Soc ; 146(4): 2379-2386, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251985

RESUMO

Control over the stereochemistry of metal-organic cages can give rise to useful functions that are entwined with chirality, such as stereoselective guest binding and chiroptical applications. Here, we report a chiral CuI12L4 pseudo-octahedral cage that self-assembled from condensation of triaminotriptycene, aminoquinaldine, and diformylpyridine subcomponents around CuI templates. The corners of this cage consist of six head-to-tail dicopper(I) helicates whose helical chirality can be controlled by the addition of enantiopure 1,1'-bi-2-naphthol (BINOL) during the assembly process. Chiroptical and nuclear magnetic resonance (NMR) studies elucidated the process and mechanism of stereochemical information transfer from BINOL to the cage during the assembly process. Initially formed CuI(BINOL)2 thus underwent stereoselective ligand exchange during the formation of the chiral helicate corners of the cage, which determined the overall cage stereochemistry. The resulting dicopper(I) helicate corners of the cage were also shown to generate circularly polarized luminescence.

4.
J Am Chem Soc ; 146(1): 1109-1121, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38141046

RESUMO

The energy dissipative features of hydrogen bonds under conditions of mechanical strain have provided an ongoing incentive to explore hydrogen bonding units for the purpose of controlling and customizing the mechanical properties of polymeric materials. However, there remains a need for hydrogen bond units that (1) possess directionality, (2) provide selectivity, (3) dissipate energy effectively, and (4) can be incorporated readily into polymeric materials to regulate their mechanical properties. Here, we report mechanically interlocked hydrogen bond units that incorporate multiple hydrogen bonds within a [2]catenane structure. The conformational flexibility and associated spatial folding characteristics of the [2]catenane units allow for molecular scale motion under external stress, while the interlocked structure serves as a pivot that maintains the directionality and selectivity of the resultant hydrogen bonding units. When incorporated into polymers, these interlocked hydrogen bond motifs serve to strengthen and toughen the resulting materials. This study not only presents a novel hydrogen bond unit for creating polymeric materials with improved mechanical properties but also underscores the unique opportunities that mechanically interlocked hydrogen bond structures may provide across a diverse range of applications.

5.
Nat Rev Chem ; 7(11): 768-782, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783822

RESUMO

Macrocyclic molecules have been used in various fields owing to their guest binding properties. Macrocycle-based host-guest chemistry in solution can allow for precise control of complex formation. Although solution-phase host-guest complexes are easily prepared, their limited stability and processability prevent widespread application. Extending host-guest chemistry from solution to the solid state results in complexes that are generally more robust, enabling easier processing and broadened applications. Macrocyclic compounds in the solid state can encapsulate guests with larger affinities than their soluble counterparts. This is crucial for use in applications such as separation science and devices. In this Review, we summarize recent progress in macrocycle-based solid-state host-guest chemistry and discuss the basic physical chemistry of these complexes. Representative macrocycles and their solid-state complexes are explored, as well as potential applications. Finally, perspectives and challenges are discussed.

6.
J Am Chem Soc ; 145(34): 18789-18799, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37535445

RESUMO

Despite the tremendous breakthrough of immunotherapy, the low response rate and resistance of immune checkpoint inhibitors (ICIs) toward solid tumors occur frequently. A highly hypoxic tumor microenvironment (TME) provides tumor cells with high concentrations of HIF-1α and polyamines to evade immune cell destruction. Reprogramming of an immunogenic TME has exhibited a brilliant future to boost immunotherapeutic performances. Herein, a supramolecular nanomedicine (TAPP) is developed on the basis of host-guest molecular recognition and metal coordination, showing the capability to remodel the immunosuppressive TME. Tamoxifen (Tmx) and Fe3+ are encapsulated into TAPP to achieve the combination of chemotherapy and chemodynamic therapy (CDT). Tmx directly downregulates HIF-1α, and a pillar[5]arene-based macrocyclic host successfully eliminates polyamines in tumors. Enhanced immunogenic cell death is achieved by Tmx and Fe3+, and the therapeutic efficacy is further synergized by immune checkpoint blockade (ICB) therapy. This supramolecular reprogramming modality encourages cytotoxic T lymphocyte infiltration, achieving pre-eminent immune response and long-term tumor suppression.


Assuntos
Calixarenos , Gastrópodes , Neoplasias , Animais , Microambiente Tumoral , Imunoterapia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
7.
J Am Chem Soc ; 145(20): 11130-11139, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155275

RESUMO

Room-temperature phosphorescence (RTP) is a photophysical phenomenon typically associated with a long-lived emission that can be detected by the unaided eye. Several natural proteins display RTP, as do certain artificial polymers. In both cases, the RTP is ascribed to effective intramolecular through-space electronic communication. However, small molecules with internal electronic communication that enable RTP are relatively rare. Herein, we describe an alkyl halide-responsive RTP system consisting of a meta-formylphenyl-bearing pillar[5]arene derivative that supports effective through-space charge transfer (TSCT) within the pillararene cavity. Treatment with bromoethane, a heavy atom-containing guest for the pillar[5]arene host, serves to enhance the emission. An isomeric para-formylphenyl-bearing pillar[5]arene system proved ineffective in producing an RTP effect. Quantum chemical calculations based on single-crystal X-ray diffraction analyses provided insights into the structural determinants governing TSCT between the 1,4-dimethoxybenzene donor units and the formylphenyl groups of the pillar[5]arene, as well as the associated energy gaps and intersystem crossing channels. We believe that the present system and the associated mechanistic analysis provide the foundation for design of new small molecule with tunable RTP features.

8.
ACS Appl Mater Interfaces ; 14(36): 41072-41078, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36053117

RESUMO

2,6-Lutidine (2,6-LT) is a very important raw material in the chemical industry, but the impurities of 3-picoline (3-PC) and 4-picoline (4-PC) existing in 2,6-LT seriously affect its quality. Considering different molecular sizes of these three compounds, herein, we exploit nonporous adaptive crystals (NACs) of pillararenes as purifying agents for removal of 3-PC and 4-PC in 2,6-LT. We find that per-ethylated pillar[5]arene (EtP5) can selectively adsorb 3-PC and 4-PC, while negligible capture of 2,6-LT is observed, resulting in improvement of the purity of 2,6-LT up to 94.9%. Single-crystal structures indicate that the excellent selectivity originates from the size match and complexation stability differences among different host/guest pairs. After purification, NACs of EtP5 can be easily regenerated and used in the next run without a significant performance degradation.

9.
Chem Sci ; 13(25): 7536-7540, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35872814

RESUMO

Pyrrolidine, an important feedstock in the chemical industry, is commonly produced via vapor-phase catalytic ammoniation of tetrahydrofuran (THF). Obtaining pyrrolidine with high purity and low energy cost has extremely high economic and environmental values. Here we offer a rapid and energy-saving method for adsorptive separation of pyrrolidine and THF by using nonporous adaptive crystals of per-ethyl pillar[6]arene (EtP6). EtP6 crystals show a superior preference towards pyrrolidine in 50 : 50 (v/v) pyrrolidine/THF mixture vapor, resulting in rapid separation. The purity of pyrrolidine reaches 95% in 15 min of separation, and after 2 h, the purity is found to be 99.9%. Single-crystal structures demonstrate that the selectivity is based on the stability difference of host-guest structures after uptake of THF or pyrrolidine and non-covalent interactions in the crystals. Besides, EtP6 crystals can be recycled efficiently after the separation process owing to reversible transformations between the guest-free and guest-loaded EtP6.

10.
Angew Chem Int Ed Engl ; 61(19): e202202381, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35234348

RESUMO

The fabrication of single-molecule white-light emission (SMWLE) materials has become a highly studied topic in recent years and through-space charge transfer (TSCT) is emerging as an important concept in this field. However, the preparation of ideal TSCT-based SMWLE materials is still a big challenge. Herein, we report a bifunctional pillar[5]arene (TPCN-P5-TPA) with a linear donor-spacer-acceptor structure and aggregation-induced emission (AIE) property. The bulky pillar[5]arene between the donor and acceptor induces a twisted conformation and a non-conjugated structure, resulting in intramolecular TSCT. In addition, the AIE feature and pillar[5]arene cavity endow TPCN-P5-TPA with responsiveness to viscosity and polar guests, by which the TSCT emission is triggered. The combination of blue locally-excited state emission and yellow TSCT emission of TPCN-P5-TPA generates SMWLE. Therefore, we provide a new and versatile strategy for the construction of TSCT-based SMWLE materials.

11.
J Am Chem Soc ; 143(39): 15975-15983, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34403582

RESUMO

Reproducing the structure and function of biological membrane channels, synthetic nanopores have been developed for applications in membrane filtration technologies and biomolecular sensing. Stable stand-alone synthetic nanopores have been created from a variety of materials, including peptides, nucleic acids, synthetic polymers, and solid-state membranes. In contrast to biological nanopores, however, furnishing such synthetic nanopores with an atomically defined shape, including deliberate placement of each and every chemical group, remains a major challenge. Here, we introduce a chemosynthetic macromolecule-extended pillararene macrocycle (EPM)-as a chemically defined transmembrane nanopore that exhibits selective transmembrane transport. Our ionic current measurements reveal stable insertion of individual EPM nanopores into a lipid bilayer membrane and remarkable cation type-selective transport, with up to a 21-fold selectivity for potassium over sodium ions. Taken together, direct chemical synthesis offers a path to de novo design of a new class of synthetic nanopores with custom transport functionality imprinted in their atomically defined chemical structure.

12.
Angew Chem Int Ed Engl ; 60(36): 19997-20002, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34189820

RESUMO

Chemoresponsive supramolecular systems with infinite switching capability are important for applications in recycled materials and intelligent devices. To attain this objective, here a chemoresponsive polypseudorotaxane is reported on the basis of a bis(p-phenylene)-34-crown-10 macrocycle (H) and a cyano-substituted viologen guest (G). H and G form a [2]pseudorotaxane (H⊃G) both in solution and in the solid state. Upon addition of AgSF6 , a polypseudorotaxane (denoted as [H⋅G⋅Ag]n ) forms as synergistically driven by host-guest complexation and metal-coordination interactions. [H⋅G⋅Ag]n depolymerizes into a [3]pseudorotaxane (denoted as H2 ⋅G⋅Ag2 ⋅acetone2 ) upon addition of H and AgSF6 , while it reforms with successive addition of G. The transformations between [H⋅G⋅Ag]n and H2 ⋅G⋅Ag2 ⋅acetone2 can be switched for infinite cycles, superior to the conventional chemoresponsive supramolecular polymeric systems with limited switching capability.

13.
J Am Chem Soc ; 143(4): 2164-2169, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33442975

RESUMO

Ultralong organic phosphorescence holds great promise as an important approach for optical materials and devices. Most of phosphorescent organic molecules with long lifetimes are substituted with heavy atoms or carbonyl groups to enhance the intersystem crossing (ISC), which requires complicated design and synthesis. Here, we report a cyclization-promoted phosphorescence phenomenon by boosting ISC. N-butyl carbazole exhibits a phosphorescence lifetime (τp) of only 1.45 ms and a low phosphorescence efficiency in the solution state at 77 K due to the lack of efficient ISC. In order to promote its phosphorescence behavior, we explored the influence of conjugation. By linear conjugation of four carbazole units, possible ISC channels are increased so that a longer τp of 2.24 s is observed. Moreover, by cyclization, the energy gap between the singlet and triplet states is dramatically decreased to 0.04 eV for excellent ISC efficiency accompanied by increased rigidification to synergistically suppress the nonradiative decay, resulting in satisfactory phosphorescence efficiency and a prolonged τp to 3.41 s in the absence of any heavy atom or carbonyl group, which may act as a strategy to prepare ultralong phosphorescent organic materials by enhancing the ISC and rigidification.

14.
Angew Chem Int Ed Engl ; 60(11): 5766-5770, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33295014

RESUMO

Azobenzene (azo)-based macrocycles are highly fascinating in supramolecular chemistry because of their light-responsiveness. In this work, a series of azo-based macrocyclic arenes 1, 2, 3, and 4, distinguished by the substituted positions of azo groups, is rationally designed and synthesized via a fragment-cyclization method. From the crystal and computed structures of 1, 2, and 3, we observe that the cavity size of these azo-macrocycles decreases gradually upon E→Z photoisomerization. Moreover, light-controlled host-guest complexations between azo-macrocycle 1 and guest molecules (7,7,8,8-tetracyanoquinodimethane, terephthalonitrile) are successfully achieved. This work provides a simple and effective method to prepare azo-macrocycles, and the light-responsive molecular-encapsulation systems in this work may further advance the design and applications of novel photo-responsive host-guest systems.

15.
J Am Chem Soc ; 142(46): 19722-19730, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33166122

RESUMO

The separation of 2-methylfuran (MeF) and 2,5-dimethylfuran (DMeF) mixtures is very important in the chemical industry. Herein, we offer a novel strategy for the separation of MeF and DMeF using nonporous adaptive crystals (NACs) of perethylated pillar[5]arene (EtP5), perethylated pillar[6]arene (EtP6), perbromoethylated pillar[5]arene (BrP5), and perbromoethylated pillar[6]arene (BrP6). We find that the crystals of EtP6 and BrP5 show remarkable selectivities for MeF in a 50:50 (v/v) MeF:DMeF mixture vapor, yielding purities of 94.0 and 96.3%, respectively. Single-crystal structures reveal that these different selectivities come from the different thermodynamic stabilities and binding modes of the host-guest complexes. Cycling experiments demonstrate that these crystals can be reused more than five cycles without loss of performance.

16.
J Am Chem Soc ; 142(41): 17340-17345, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33016703

RESUMO

Chiral metal-organic complexes hold great promise as new functional materials that exhibit unique stereochemical and optical properties. Here, we report the formation of optically pure pillar[5]arene-based platinum chiral metallacycles. By coordination with 60° and 90° Pt(II) acceptors, planar chiral platinum triangles were self-assembled efficiently and characterized by multiple spectroscopic techniques. Optical studies indicated that these metallacycles had chiral properties: pS enantiomers showed a negative Cotton effect, and pR enantiomers exhibited a positive Cotton effect. In addition, these metallacycles also exhibited circularly polarized luminescence.


Assuntos
Calixarenos/química , Complexos de Coordenação/química , Corantes Fluorescentes/química , Compostos Organoplatínicos/química , Ácidos Borônicos/química , Modelos Moleculares , Estrutura Molecular , Piridinas/química , Espectrometria de Fluorescência , Estereoisomerismo
17.
Org Lett ; 22(16): 6662-6666, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806202

RESUMO

We develop a self-immolative rotaxane sensor for fluoride sensing based on host-guest interactions between pillar[5]arene and fluoride-promoted cleavage of Si-O bond. Because of the selective and fast reaction between silane and fluoride, the rotaxane sensor shows anion selectivity and rapid response. The self-immolative nature of the rotaxane improve its sensitivity. Moreover, a fluoride sensing test paper based on the rotaxane sensor is made, which shows the practicable application of the rotaxane sensor.

18.
J Am Chem Soc ; 142(42): 17903-17907, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32830970

RESUMO

Despite rapid progress in recent years, it has remained challenging to prepare well-defined metal-organic complex-based suprastructures. As a result, the physicochemical mechanisms leading to their geometrical complexity remain perplexing. Here, a porphyrin-based metallacage was used as a building block to construct octahedra via self-assembly, and the mechanism for the evolution of the metallacages into octahedra was disclosed by both experiments and theoretical simulations.

19.
Angew Chem Int Ed Engl ; 59(45): 20208-20214, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32710650

RESUMO

Imaging of hypoxia in vivo helps with accurate cancer diagnosis and evaluation of therapeutic outcomes. A PtII metallacage with oxygen-responsive red phosphorescence and steady fluorescence for in vivo hypoxia imaging and chemotherapy is reported. The therapeutic agent and diagnostic probe were integrated into the metallacage through heteroligation-directed self-assembly. Nanoformulation by encapsulating the metallacage into nanoparticles greatly enhanced its stability the in physiological environment, rendering biomedical applications feasible. Apart from enhanced red phosphorescence upon hypoxia, the ratio between red and blue emissions, which only varies with intracellular oxygen level, provides a more precise standard for hypoxia imaging and detection. Moreover, in vivo explorations demonstrate the promising potential applications of the metallacage-loaded nanoparticles as theranostic agents for tumor hypoxia imaging and chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Hipóxia Celular , Neoplasias/metabolismo , Oxigênio/análise , Platina/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Medicina de Precisão , Espectrofotometria Ultravioleta
20.
Angew Chem Int Ed Engl ; 59(27): 10868-10872, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32243686

RESUMO

The contradiction between the rising demands of optical chirality sensing and the failure in chiral detection of cryptochiral compounds encourages researchers to find new methods for chirality amplification. Inspired by planar chirality and the host-guest recognition of pillararenes, we establish a new concept for amplifying CD signals of cryptochiral molecules by pillararene host-guest complexation induced chirality amplification. The planar chirality of pillararenes is induced and stabilized in the presence of the chiral guest, which makes the cryptochiral molecule detectable by CD spectroscopy. Several chiral guests are selected in these experiments and the mechanism of chiral amplification is studied with a non-rotatable pillararene derivative and density functional theory calculations. We believe this work affords deeper understanding of chirality and provides a new perspective for chiral sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...