Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Divers ; 46(1): 49-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38343596

RESUMO

Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch (Larix) forests, which are coniferous forests widely distributed in the mountainous and plateau areas in North and Southwest China, are critical for maintaining the environmental conditions and species diversity. Few studies of larch forests have examined the beta-diversity and its constituent components (species turnover and nestedness-resultant components). Here, we used 483 larch forest plots to determine the total beta-diversity and its components in different life forms (i.e., tree, shrub, and herb) of larch forests in China and to evaluate the main drivers that underlie this beta-diversity. We found that total beta-diversity of larch forests was mainly dependent on the species turnover component. In all life forms, total beta-diversity and the species turnover component increased with increasing geographic, elevational, current climatic, and paleoclimatic distances. In contrast, the nestedness-resultant component decreased across these same distances. Geographic and environmental factors explained 20%-25% of total beta-diversity, 18%-27% of species turnover component, and 4%-16% of nestedness-resultant component. Larch forest types significantly affected total beta-diversity and species turnover component. Taken together, our results indicate that life forms affect beta-diversity patterns of larch forests in China, and that beta-diversity is driven by both niche differentiation and dispersal limitation. Our findings help to greatly understand the mechanisms of community assemblies of larch forests in China.

2.
ACS Omega ; 8(42): 39222-39232, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901560

RESUMO

Bismuth telluride and its alloys are widely utilized in thermoelectric refrigeration and power generation devices. Waste bismuth telluride-based cooling chips contain valuable elements; however, recycling processes for these materials remain underdeveloped due to their complexity. In this study, we developed a concise and efficient chemical method that does not require expensive reagents or equipment, enabling the separation and purification of tellurium, bismuth, selenium, and antimony from waste bismuth telluride-based cooling chips. Initially, the waste was leached with HCl and NaClO3 to dissolve primary elements and recover 99.9% of selenium using hydroxylamine hydrochloride. Subsequently, Na2S and NaOH were employed for precipitation and leaching, resulting in a solution containing tellurium. The precipitated residue was treated with HNO3 to oxidize antimony into insoluble SbOHN and dissolve bismuth completely. 99.8% of the bismuth telluride waste was dissolved via oxidative leaching through hydrolysis. A small amount of sodium sulfide reduced the precipitation percentage of tellurium from 11.9% to 7.5% in an alkaline solution, and the direct recovery percentage of tellurium in the form of TeO2 exceeded 90%, while the purity of TeO2 reached 99.9%. By adjusting the pH of the bismuth solution to 0.15, 98.9% of the bismuth was able to precipitate and be recovered as BiOCl, with the purity also reaching 99.9%. In summary, this study presents an efficient hydrometallurgical method for treating bismuth telluride waste and provides theoretical guidance for reagent dosage, demonstrating the significant potential for industrial applications.

3.
Plant Divers ; 44(5): 436-444, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187549

RESUMO

Larch forests are important for species diversity, as well as soil and water conservation in mountain regions. In this study, we determined large-scale patterns of species richness in larch forests and identified the factors that drive these patterns. We found that larch forest species richness was high in southern China and low in northern China, and that patterns of species richness along an elevational gradient depend on larch forest type. In addition, we found that patterns of species richness in larch forests are best explained by contemporary climatic factors. Specifically, mean annual temperature and annual potential evapotranspiration were the most important factors for species richness of tree and shrub layers, while mean temperature of the coldest quarter and anomaly of annual precipitation from the Last Glacial Maximum to the present were the most important for that of herb layer and the whole community. Community structural factors, especially stand density, are also associated with the species richness of larch forests. Our findings that species richness in China's larch forests is mainly affected by energy availability and cold conditions support the ambient energy hypothesis and the freezing tolerance hypothesis.

4.
Sci Total Environ ; 846: 157456, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863563

RESUMO

High atmospheric nitrogen (N) deposition and low soil phosphorus (P) availability occur simultaneously in tropical areas, and thus tropical plants need to adapt nutrient-use strategies to maintain growth and survival. Therefore, identifying the adaptative strategies of tropical plants at different successional stages under low soil P availability is indispensable. Here, we separately investigated foliar traits, photosynthetic characteristics, and P fractions of 8 species in the primary and secondary tropical forests after 10 years of N and P fertilization. P addition increased foliar P concentrations and deceased N:P ratio in the primary forest and secondary forest. The foliar photosynthetic rates did not significantly respond to nutrient additions, and the foliar photosynthetic P-use efficiency (PPUE) reduced under the P addition in the primary forest. In contrast, the foliar photosynthetic rates and photosynthetic nitrogen (N)-use efficiency (PNUE) were enhanced with nutrient additions in the secondary forest. The allocations of foliar nucleic acid P and residual P were reduced by P addition in the primary forest, whereas the allocation of metabolic P was enhanced and the allocation of residual P was reduced by P addition in the secondary forest. Additionally, a higher proportion of structural P was found in the primary forest, and a higher proportion of metabolic P was observed in the secondary forest. Interesting, structural equation model analysis revealed that the plants decreased the allocation of foliar nucleic acid P and increased the allocation of structural P in the primary forest, thereby reducing photosynthetic rates. Whereas the plants enhanced photosynthetic rates by promoting PPUE and the allocation of foliar metabolic P in the secondary forest. Our findings highlighted tropical plants at different successional stages can reasonably allocate foliar P to regulate photosynthetic rates and acclimate to low P environments.


Assuntos
Ácidos Nucleicos , Fósforo , Florestas , Nitrogênio/análise , Ácidos Nucleicos/análise , Fósforo/análise , Fotossíntese , Folhas de Planta/química , Solo/química , Árvores , Clima Tropical
5.
Science ; 376(6595): 865-868, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35587983

RESUMO

Multispecies tree planting has long been applied in forestry and landscape restoration in the hope of providing better timber production and ecosystem services; however, a systematic assessment of its effectiveness is lacking. We compiled a global dataset of matched single-species and multispecies plantations to evaluate the impact of multispecies planting on stand growth. Average tree height, diameter at breast height, and aboveground biomass were 5.4, 6.8, and 25.5% higher, respectively, in multispecies stands compared with single-species stands. These positive effects were mainly the result of interspecific complementarity and were modulated by differences in leaf morphology and leaf life span, stand age, planting density, and temperature. Our results have implications for designing afforestation and reforestation strategies and bridging experimental studies of biodiversity-ecosystem functioning relationships with real-world practices.


Assuntos
Conjuntos de Dados como Assunto , Recuperação e Remediação Ambiental , Agricultura Florestal , Florestas , Árvores , Biodiversidade
6.
Sci China Life Sci ; 65(5): 861-895, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35146581

RESUMO

Enhancing the terrestrial ecosystem carbon sink (referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide (CO2) concentration and to achieve carbon neutrality target. To better understand the characteristics of terrestrial C sinks and their contribution to carbon neutrality, this review summarizes major progress in terrestrial C budget researches during the past decades, clarifies spatial patterns and drivers of terrestrial C sources and sinks in China and around the world, and examines the role of terrestrial C sinks in achieving carbon neutrality target. According to recent studies, the global terrestrial C sink has been increasing from a source of (-0.2±0.9) Pg C yr-1 (1 Pg=1015 g) in the 1960s to a sink of (1.9±1.1) Pg C yr-1 in the 2010s. By synthesizing the published data, we estimate terrestrial C sink of 0.20-0.25 Pg C yr-1 in China during the past decades, and predict it to be 0.15-0.52 Pg C yr-1 by 2060. The terrestrial C sinks are mainly located in the mid- and high latitudes of the Northern Hemisphere, while tropical regions act as a weak C sink or source. The C balance differs much among ecosystem types: forest is the major C sink; shrubland, wetland and farmland soil act as C sinks; and whether the grassland functions as C sink or source remains unclear. Desert might be a C sink, but the magnitude and the associated mechanisms are still controversial. Elevated atmospheric CO2 concentration, nitrogen deposition, climate change, and land cover change are the main drivers of terrestrial C sinks, while other factors such as fires and aerosols would also affect ecosystem C balance. The driving factors of terrestrial C sink differ among regions. Elevated CO2 concentration and climate change are major drivers of the C sinks in North America and Europe, while afforestation and ecological restoration are additionally important forcing factors of terrestrial C sinks in China. For future studies, we recommend the necessity for intensive and long term ecosystem C monitoring over broad geographic scale to improve terrestrial biosphere models for accurately evaluating terrestrial C budget and its dynamics under various climate change and policy scenarios.


Assuntos
Sequestro de Carbono , Ecossistema , Ciclo do Carbono , Dióxido de Carbono , China , Mudança Climática
7.
Sci Total Environ ; 818: 151742, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34808187

RESUMO

Land-use change can lead to profound changes in the storage of soil organic carbon (SOC) in the tropics. Soil microbial residues make up the majority of persistent SOC pools, yet the impact of land-use change on microbial residue C accumulation in the tropics is not well understood. Here, we investigated how the conversion of tropical primary montane rainforest to secondary forest and the conversions of secondary forest to Prunus salicina plantation and tea plantation, influence the accumulation of soil microbial residue C (indicated by amino sugars). Our results showed that the secondary forest had a higher SOC than that of the primary forest (+63%), while they had no difference in microbial residue C concentration, indicating a relatively slow microbial-derived C accrual during secondary succession. Moreover, the P. salicina plantation and tea plantation had lower SOC than the secondary forest (-53% and -57%, respectively). A decrease in fungal biomass (-51%) resulted in less fungal and total residue C concentrations in the tea plantation than in the secondary forest (-38% and -35%, respectively), indicating microbial-derived C loss following the forest conversion. The change in microbial residue C depended on litter standing crop rather than soil nutrient and root biomass. Litter standing crop affected microbial residue C concentration by regulating fungal biomass and hydrolytic enzyme activities. Taken together, our results highlight that litter-microbe interactions drive microbial residue C accumulation following forest conversions in the tropics.


Assuntos
Carbono , Solo , Carbono/análise , China , Florestas , Solo/química , Microbiologia do Solo , Chá
8.
Environ Pollut ; 268(Pt B): 115941, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33162211

RESUMO

Atmospheric nitrogen (N) deposition has a significant influence on soil organic carbon (SOC) accumulation in forest ecosystems. Microbial residues, as by-products of microbial anabolism, account for a significant fraction of soil C pools. However, how N deposition affects the accumulation of soil microbial residues in different forest biomes remains unclear. Here, we investigated the effects of six/seven-year N additions on microbial residues (amino sugar biomarkers) in eight forests from tropical to boreal zone in eastern China. Our results showed a minor change in the soil microbial residue concentrations but a significant change in the contribution of microbial residue-C to SOC after N addition. The contribution of fungal residue-C to SOC decreased under low N addition (50 kg N ha-1 yr-1) in the tropical secondary forest (-19%), but increased under high N addition (100 kg N ha-1 yr-1) in the temperate Korean pine mixed forest (+21%). The contribution of bacterial residue-C to SOC increased under the high N addition in the subtropical Castanopsis carlesii forest (+26%) and under the low N addition in the temperate birch forest (+38%), respectively. The responses of microbial residue-C in SOC to N addition depended on the changes in soil total N concentration and fungi to bacteria ratio under N addition and climate. Taken together, these findings provide the experimental evidence that N addition diversely regulates the formation and composition of microbial-derived C in SOC in forest ecosystems.


Assuntos
Carbono , Solo , Carbono/análise , China , Ecossistema , Florestas , Nitrogênio/análise , Microbiologia do Solo
9.
Natl Sci Rev ; 7(1): 132-140, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34692027

RESUMO

Lakes have played a critical role in providing water and ecosystem services for people and other organisms in China for millennia. However, accelerating climate change and economic boom have resulted in unprecedented changes in these valuable lakes. Using Landsat images covering the entity of the country, we explored the changes in China's lakes and the associated driving forces over the last 30 years (i.e. mid-1980s to 2015). We discovered that China's lakes have changed with divergent regional trends: in the sparsely populated Tibetan Plateau, lakes are abundant and the lake area has increased dramatically from 38 596 to 46 831 km2 (i.e. increased by 8235 km2, or 21.3%), whereas, in the densely populated northern and eastern regions, lakes are relatively scarce and the lake area has decreased from 36 659 to 33 657 km2 (i.e. decreased by 3002 km2, or 8.2%). In particular, severe lake decreases occurred in the Mongolia-Xinjiang Plateau and the Eastern Plain (-2151 km2). Statistical analyses indicated that climate was the most important factor controlling lake changes in the Tibetan Plateau, the Yun-Gui Plateau and the Northeast Plain. However, the strength of climatic control on lake changes was low in the Eastern Plain and the Mongolia-Xinjiang Plateau, where human activities, e.g. impoldering, irrigation and mining, have caused serious impacts on lakes. Further lake changes will exacerbate regional imbalances between lake resources and population distribution, and thus may increase the risk of water-resource crises in China.

10.
Proc Natl Acad Sci U S A ; 115(16): 4033-4038, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666316

RESUMO

Plant nitrogen (N) and phosphorus (P) content regulate productivity and carbon (C) sequestration in terrestrial ecosystems. Estimates of the allocation of N and P content in plant tissues and the relationship between nutrient content and photosynthetic capacity are critical to predicting future ecosystem C sequestration under global change. In this study, by investigating the nutrient concentrations of plant leaves, stems, and roots across China's terrestrial biomes, we document large-scale patterns of community-level concentrations of C, N, and P. We also examine the possible correlation between nutrient content and plant production as indicated by vegetation gross primary productivity (GPP). The nationally averaged community concentrations of C, N, and P were 436.8, 14.14, and 1.11 mg·g-1 for leaves; 448.3, 3.04 and 0.31 mg·g-1 for stems; and 418.2, 4.85, and 0.47 mg·g-1 for roots, respectively. The nationally averaged leaf N and P productivity was 249.5 g C GPP·g-1 N·y-1 and 3,157.9 g C GPP·g-1 P·y-1, respectively. The N and P concentrations in stems and roots were generally more sensitive to the abiotic environment than those in leaves. There were strong power-law relationships between N (or P) content in different tissues for all biomes, which were closely coupled with vegetation GPP. These findings not only provide key parameters to develop empirical models to scale the responses of plants to global change from a single tissue to the whole community but also offer large-scale evidence of biome-dependent regulation of C sequestration by nutrients.


Assuntos
Sequestro de Carbono , Carbono/análise , Ecossistema , Nitrogênio/análise , Fósforo/análise , Plantas/química , Atmosfera/química , Biomassa , China , Clima , Fazendas , Florestas , Pradaria , Humanos , Especificidade de Órgãos , Dispersão Vegetal , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Solo/química , Especificidade da Espécie
11.
Nat Commun ; 8(1): 151, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28751686

RESUMO

Forests play an important role in global carbon cycles. However, the lack of available information on carbon stocks in dead organic matter, including woody debris and litter, reduces the reliability of assessing the carbon cycles in entire forest ecosystems. Here we estimate that the national DOM carbon stock in the period of 2004-2008 is 925 ± 54 Tg, with an average density of 5.95 ± 0.35 Mg C ha-1. Over the past two decades from periods of 1984-1988 to 2004-2008, the national dead organic matter carbon stock has increased by 6.7 ± 2.2 Tg carbon per year, primarily due to increasing forest area. Temperature and precipitation increase the carbon density of woody debris, but decrease that of litter. Additionally, the woody debris increases significantly with above ground biomass and forest age. Our results can improve estimates of the carbon budget in China's forests and for better understanding of effects of climate and stand characteristics on dead organic matter distribution.Reliable estimates of the total forest carbon (C) pool are lacking due to insufficient information on dead organic matter (DOM). Here, the authors estimate that the current DOM C stock in China is 925 ± 54 Tg and that it grew by 6.7 ± 2.2 Tg C/yr over the past two decades primarily due to increasing forest area.

12.
Sci China Life Sci ; 58(6): 602-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25921943

RESUMO

The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.


Assuntos
Árvores/genética , Madeira , China , Clima , Ecossistema , Meio Ambiente , Agricultura Florestal , Geografia , Análise de Componente Principal , Análise de Regressão , Especificidade da Espécie , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA