Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921103

RESUMO

Prolonged periods of host-lethal infection by entomopathogenic fungi pose challenges to the development of biological control agents. The obligate entomopathogen C. obscurus, however, rapidly kills aphid hosts, warranting investigation. This study investigated the interaction between C. obscurus and a bean aphid Megoura crassicauda during the incubation period of infection, using transcriptome analysis to map host gene expression profiles. Results indicate C. obscurus-inoculated aphid activation of the wound healing immune responses, alongside suppression of the key molecules involved in Toll signaling, melanization, and metabolism. Furthermore, neuromotor system-related genes were upregulated, paralleling the intoxication observed in a nematode pest treated with C. obscurus-derived CytCo protein. To deepen interaction insights, a His-tag pull-down assay coupled with mass spectrometry analysis was conducted using CytCo as a bait to screen for potential aphid protein interactors. The proteins were identified based on the assembled transcriptome, and eleven transmembrane proteins were predicted to bind to CytCo. Notably, a protein of putatively calcium-transporting ATPase stood out with the highest confidence. This suggests that CytCo plays a vital role in C. obscurus killing aphid hosts, implicating calcium imbalance. In conclusion, C. obscurus effectively inhibits aphid immunity and exhibits neurotoxic potential, expediting the infection process. This finding facilitates our understanding of the complex host-pathogen interactions and opens new avenues for exploring biological pest management strategies in agroforestry.

2.
World J Gastroenterol ; 27(36): 6079-6092, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34629821

RESUMO

BACKGROUND: Gastric cancer is a prevalent malignant cancer with a high incidence and significantly affects the health of modern people globally. Cisplatin (DDP) is one of the most common and effective chemotherapies for patients with gastric cancer, but DDP resistance remains a severe clinical challenge. AIM: To explore the function of M2 polarized macrophages-derived exosomal microRNA (miR)-588 in the modulation of DDP resistance of gastric cancer cells. METHODS: M2 polarized macrophages were isolated and identified by specific markers using flow cytometry analysis. The exosomes from M2 macrophages were identified by transmission electron microscopy and related markers. The uptake of the PKH67-labelled M2 macrophages-derived exosomes was detected in SGC7901 cells. The function and mechanism of exosomal miR-588 from M2 macrophages in the modulation of DDP resistance of gastric cancer cells was analyzed by CCK-8 assay, apoptosis analysis, colony formation assay, Western blot analysis, qPCR analysis, and luciferase reporter assay in SGC7901 and SGC7901/DDP cells, and by tumorigenicity analysis in nude mice. RESULTS: M2 polarized macrophages were isolated from mouse bone marrow stimulated with interleukin (IL)-13 and IL-4. Co-cultivation of gastric cancer cells with M2 polarized macrophages promoted DDP resistance. M2 polarized macrophages-derived exosomes could transfer in gastric cancer cells to enhance DDP resistance. Exosomal miR-588 from M2 macrophages contributed to DDP resistance of gastric cancer cells. miR-588 promoted DDP-resistant gastric cancer cell growth in vivo. miR-588 was able to target cylindromatosis (CYLD) in gastric cancer cells. The depletion of CYLD reversed miR-588 inhibition-regulated cell proliferation and apoptosis of gastric cancer cells exposed to DDP. CONCLUSION: In conclusion, we uncovered that exosomal miR-588 from M2 macrophages contributes to DDP resistance of gastric cancer cells by partly targeting CYLD. miR-588 may be applied as a potential therapeutic target for the treatment of gastric cancer.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos , Camundongos , Camundongos Nus , MicroRNAs/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA