Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7679, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561368

RESUMO

Allelopathy is a process whereby a plant directly or indirectly promotes or inhibits growth of surrounding plants. Perennial sugarcane root extracts from various years significantly inhibited Bidens pilosa, Digitaria sanguinalis, sugarcane stem seedlings, and sugarcane tissue-cultured seedlings (P < 0.05), with maximum respective allelopathies of - 0.60, - 0.62, - 0.20, and - 0.29. Allelopathy increased with increasing concentrations for the same-year root extract, and inhibitory effects of the neutral, acidic, and alkaline components of perennial sugarcane root extract from different years were significantly stronger than those of the control for sugarcane stem seedlings (P < 0.05). The results suggest that allelopathic effects of perennial sugarcane root extract vary yearly, acids, esters and phenols could be a main reason for the allelopathic autotoxicity of sugarcane ratoons and depend on the type and content of allelochemicals present, and that allelopathy is influenced by other environmental factors within the rhizosphere such as the presence of old perennial sugarcane roots. This may be a crucial factor contributing to the decline of perennial sugarcane root health.


Assuntos
Saccharum , Plântula , Raízes de Plantas/química , Plantas Daninhas/fisiologia , Alelopatia , Extratos Vegetais/química
2.
Plant Dis ; 107(3): 809-819, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35949187

RESUMO

Powdery mildew is a key airborne foliar disease of barley in southeastern and southwestern China. Barley varieties usually partially or wholly lose resistance to the pathogen Blumeria graminis (DC.) f. sp. hordei 3 to 5 years after release due to the frequent acquirements of new virulences in the pathogen population. However, no B. graminis f. sp. hordei virulence detection has been carried out in the recent decade and, thus, no information is available on the present virulence components and major pathotypes in epidemic regions. Twenty-one near-isogenic lines of Pallas were selected to detect B. graminis f. sp. hordei virulence variation, with 97 pathotypes identified from the isolates collected from 2015 to 2019. The virulence complexities ranged from 1 to 12, with 1.5 isolates on average assigned per pathotype, suggesting a natural trait of high pathotype diversity and low virulence complexity in the Chinese B. graminis f. sp. hordei populations. Eleven high-virulence pathotypes were detected in the traditional barley-growing regions in Yunnan and Zhejiang. Six virulent pathotypes to resistance gene mlo-5 were detected only in the two traditional epidemic regions, with a virulence frequency (VF) of 4.8% (7 of 147). Compared with the results from a decade ago, VFs for resistance alleles Mla3, mlo-5, Mla6 + Mla14, Mla7 + Mlk, Mlg + MlCP, and Mla13 + MlRu3 + MlaRu4 increased from 0 to 0.7 to 25.8%. Isolates from Yunnan and Zhejiang had similar virulence profiles, which differed from those identified in Tibet. In addition, genetic diversities differed in the isolate groups collected from Tibet, Yunnan, and Zhejiang.


Assuntos
Ascomicetos , Virulência/genética , China , Ascomicetos/genética , Variação Genética
3.
Front Plant Sci ; 13: 1020533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247551

RESUMO

Sugarcane ratoon performance declines with increasing age due to the intergenerational accumulation and release of allelochemicals by old sugarcane roots. We aimed to clarify the effects of these allelochemicals on sugarcane seedling growth under continuous sugarcane ratoon cropping. We investigated the allelopathic effects of treatment with root aqueous extracts from sugarcane ratoons of different ages on the osmoregulatory substance content, antioxidant enzyme activity, membrane lipid peroxidation product content, photosynthetic physiological characteristics, and root exudate enzymatic characteristics of sugarcane seedlings. The root aqueous extracts exerted allelopathic effects on sugarcane seedlings. The relative electrolyte leakage, proline content, soluble protein content, soluble sugar content, malondialdehyde content, and catalase activity of the leaves were more sensitive than those of the roots. Conversely, the superoxide dismutase and peroxidase activities of the roots (positive response) were more sensitive than those of the leaves (negative response). The total chlorophyll content and net photosynthetic rate of the leaves exhibited relatively sensitive negative responses. Urease activity negatively responded but sucrase activity positively responded. We concluded that the root aqueous extracts of sugarcane ratoons may exert their allelopathic effects by affecting the level of osmoregulatory substances and causing peroxidative damage to the cell membranes of sugarcane seedlings and altering the activities of various enzymes in the rhizosphere.

4.
Theor Appl Genet ; 135(4): 1235-1245, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35006335

RESUMO

KEY MESSAGE: Powdery mildew resistance gene MlWE74, originated from wild emmer wheat accession G-748-M, was mapped in an NBS-LRR gene cluster of chromosome 2BS. Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally devastating disease. Wild emmer wheat (Triticum turgidum var. dicoccoides) is a valuable genetic resource for improving disease resistance in common wheat. A powdery mildew resistance gene was transferred to hexaploid wheat line WE74 from wild emmer accession G-748-M. Genetic analysis revealed that the powdery mildew resistance in WE74 is controlled by a single dominant gene, herein temporarily designated MlWE74. Bulked segregant analysis (BSA) and molecular mapping delimited MlWE74 to the terminal region of chromosome 2BS flanking by markers WGGBD412 and WGGBH346 within a genetic interval of 0.25 cM and corresponding to 799.9 kb genomic region in the Zavitan reference sequence. Sequence annotation revealed two phosphoglycerate mutase-like genes, an alpha/beta-hydrolases gene, and five NBS-LRR disease resistance genes that could serve as candidates for map-based cloning of MlWE74. The geographical location analysis indicated that MlWE74 is mainly distributed in Rosh Pinna and Amirim regions, in the northern part of Israel, where environmental conditions are favorable to the occurrence of powdery mildew. Moreover, the co-segregated marker WGGBD425 is helpful in marker-assisted transfer of MlWE74 into elite cultivars.


Assuntos
Resistência à Doença , Triticum , Mapeamento Cromossômico , Cromossomos de Plantas , Resistência à Doença/genética , Genes de Plantas , Família Multigênica , Doenças das Plantas/genética , Triticum/genética
5.
Plant Methods ; 17(1): 105, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641929

RESUMO

BACKGROUND: Zinc (Zn) is an important nutrient for human beings, which is also an essential micronutrient for crop growth. This study investigated the role of Zn in coordinating the mineral elements absorption in modern wheat (Triticum aestivum L.) cultivars with a new developed method. RESULTS: A method was developed, and showed a robust capability to simultaneously investigate seven mineral elements uptake in wheat seedling. With this method, we found low Zn supply (< 1 µM) promoted the absorption of potassium (K), magnesium (Mg) and manganese (Mn) in wheat seedling, while high Zn supply (> 1 µM) significantly inhibited the absorption of these elements. Cultivars with the green genes (Rht-B1b and Rht-D1b) showed a higher uptake capability on ammonium (NH4+), and cultivars with Rht-B1b allele can uptake more phosphors (P), K, calcium (Ca), Mn and Zn compared to cultivars with Rht-D1b. Further analysis indicated higher uptake capability of NH4+ in cultivars contained Rhts was independent of Zn. CONCLUSION: The key role of Zn in coordinating for mineral elements absorption was identified in modern wheat cultivars, providing the reference for Zn application in wheat. Meanwhile, this study provides a robust method for quantifying the absorption of mineral elements, which may be adopted into the broadly investigations on the coordinated nutrients absorption of plant.

6.
J Exp Bot ; 71(22): 7118-7131, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32915968

RESUMO

Barley possesses a branchless, spike-shaped inflorescence where determinate spikelets attach directly to the main axis, but the developmental mechanism of spikelet identity remains largely unknown. Here we report the functional analysis of the barley gene BRANCHED AND INDETERMINATE SPIKELET 1 (BDI1), which encodes a TCP transcription factor and plays a crucial role in determining barley inflorescence architecture and spikelet development. The bdi1 mutant exhibited indeterminate spikelet meristems that continued to grow and differentiate after producing a floret meristem; some spikelet meristems at the base of the spike formed two fully developed seeds or converted to branched spikelets, producing a branched inflorescence. Map-based cloning analysis showed that this mutant has a deletion of ~600 kb on chromosome 5H containing three putative genes. Expression analysis and virus-induced gene silencing confirmed that the causative gene, BDI1, encodes a CYC/TB1-type TCP transcription factor and is highly conserved in both wild and cultivated barley. Transcriptome and regulatory network analysis demonstrated that BDI1 may integrate regulation of gene transcription cell wall modification and known trehalose-6-phosphate homeostasis to control spikelet development. Together, our findings reveal that BDI1 represents a key regulator of inflorescence architecture and meristem determinacy in cereal crop plants.


Assuntos
Hordeum , Meristema , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , Meristema/genética , Meristema/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Theor Appl Genet ; 133(1): 369, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31802147

RESUMO

In the original publication of this article, the acknowledgement section has been missed to publish. Now the same has been provided in this correction.

8.
Theor Appl Genet ; 133(1): 163-177, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31690990

RESUMO

KEY MESSAGE: An excess-tillering semi-dwarf gene Hvhtd was identified from an EMS-induced mutant in barley and alternative splicing results in excess-tillering semi-dwarf traits. Tillering and plant height are important traits determining plant architecture and grain production in cereal crops. This study identified an excess-tillering semi-dwarf mutant (htd) from an EMS-treated barley population. Genetic analysis of the F1, F2, and F2:3 populations showed that a single recessive gene controlled the excess-tillering semi-dwarf in htd. Using BSR-Seq and gene mapping, the Hvhtd gene was delimited within a 1.8 Mb interval on chromosome 2HL. Alignment of the RNA-Seq data with the functional genes in the interval identified a gene HORVU2Hr1G098820 with alternative splicing between exon2 and exon3 in the mutant, due to a G to A single-nucleotide substitution at the exon and intron junction. An independent mutant with a similar phenotype confirmed the result, with alternative splicing between exon3 and exon4. In both cases, the alternative splicing resulted in a non-functional protein. And the gene HORVU2Hr1G098820 encodes a trypsin family protein and may be involved in the IAA signaling pathway and differs from the mechanism of Green Revolution genes in the gibberellic acid metabolic pathway.


Assuntos
Processamento Alternativo/genética , Genes de Plantas , Hordeum/anatomia & histologia , Hordeum/genética , Mutação/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Estudos de Associação Genética , Marcadores Genéticos , Homozigoto , Mutação INDEL/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Reprodutibilidade dos Testes , Sintenia/genética
9.
Int J Mol Sci ; 19(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424480

RESUMO

Pasting properties are important characteristics of barley starch from a processing standpoint. Many studies reported the close relationship between pasting properties and malting quality, especially malt extract. However, most conclusions were derived from the correlation between pasting properties and malting quality using a set of cultivars or breeding lines. In this study, a doubled haploid population of 150 lines from a cross between a Japanese malting barley and a Chinese feed barley was grown in four different environments (two sites × two years). Based on average values from all different environments, 17 significant quantitative trait loci (QTL) were identified for pasting properties. The genetic variance explained by these QTL varied from 7.0 to 23.2%. Most QTL controlling pasting properties were located on 1H, 2H, 5H, and 7H. Results confirmed the linkage between pasting properties and malt extract, with most of the QTL for pasting properties becoming nonsignificant when using malt extract as a covariate. Breakdown showed the closest correlation with malt extract. Molecular markers closely linked to the QTL can be used to select desired pasting properties to improve malting quality.


Assuntos
Mapeamento Cromossômico , Hordeum/genética , Locos de Características Quantitativas/genética , Amido/química , Análise de Variância , Farinha , Haploidia , Fenótipo
10.
Front Plant Sci ; 8: 1414, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855914

RESUMO

Black barley is caused by phytomelanin synthesized in lemma and/or pericarp and the trait is controlled by one dominant gene Blp1. The gene is mapped on chromosome 1H by molecular markers, but it is yet to be isolated. Specific-locus amplified fragment sequencing (SLAF-seq) is an effective method for large-scale de novo single nucleotide polymorphism (SNP) discovery and genotyping. In the present study, SLAF-seq with bulked segregant analysis (BSA) was employed to obtain sufficient markers to fine mapping Blp1 gene in an F2 population derived from Hatiexi No.1 × Zhe5819. Based on SNP screening criteria, a total of 77,542 polymorphic SNPs met the requirements for association analysis. Combining two association analysis methods, the overlapped region with a size of 32.41 Mb on chromosome 1H was obtained as the candidate region of Blp1 gene. According to SLAF-seq data, markers were developed in the target region and were used for mapping the Blp1 gene. Linkage analysis showed that Blp1 co-segregated with HZSNP34 and HZSNP36, and was delimited by two markers (HZSNP35 and HZSNP39) spanning 8.1 cM in 172 homozygous yellow grain F2 plants of Hatiexi No.1 × Zhe5819. More polymorphic markers were screened in the reduced target region and were used to genotype the population. As a result, Blp1 was delimited within a 1.66 Mb on chromosome 1H by the upstream marker HZSNP63 and the downstream marker HZSNP59. Our results demonstrated the utility of SLAF-seq-BSA approach to identify the candidate region and discover polymorphic markers at the specific targeted genomic region.

11.
Sci Rep ; 7: 43766, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252053

RESUMO

A poly-row branched spike (prbs) barley mutant was obtained from soaking a two-rowed barley inflorescence in a solution of maize genomic DNA. Positional cloning and sequencing demonstrated that the prbs mutant resulted from a 28 kb deletion including the inflorescence architecture gene HvRA2. Sequence annotation revealed that the HvRA2 gene is flanked by two LTR (long terminal repeat) retrotransposons (BARE) sharing 89% sequence identity. A recombination between the integrase (IN) gene regions of the two BARE copies resulted in the formation of an intact BARE and loss of HvRA2. No maize DNA was detected in the recombination region although the flanking sequences of HvRA2 gene showed over 73% of sequence identity with repetitive sequences on 10 maize chromosomes. It is still unknown whether the interaction of retrotransposons between barley and maize has resulted in the recombination observed in the present study.


Assuntos
Deleção de Genes , Genes de Plantas/genética , Hordeum/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Inflorescência/genética , Mutagênese Insercional , Proteínas de Plantas/genética , Homologia de Sequência do Ácido Nucleico , Zea mays/genética
12.
BMC Genomics ; 17(1): 911, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27835941

RESUMO

BACKGROUND: Barley semi-dwarf genes have been extensively explored and widely used in barley breeding programs. The semi-dwarf gene ari-e from Golden Promise is an important gene associated with some agronomic traits and salt tolerance. While ari-e has been mapped on barley chromosome 5H using traditional markers and next-generation sequencing technologies, it has not yet been finely located on this chromosome. RESULTS: We integrated two methods to develop molecular markers for fine-mapping the semi-dwarf gene ari-e: (1) specific-length amplified fragment sequencing (SLAF-seq) with bulked segregant analysis (BSA) to develop SNP markers, and (2) the whole-genome shotgun sequence to develop InDels. Both SNP and InDel markers were developed in the target region and used for fine-mapping the ari-e gene. Linkage analysis showed that ari-e co-segregated with marker InDel-17 and was delimited by two markers (InDel-16 and DGSNP21) spanning 6.8 cM in the doubled haploid (DH) Dash × VB9104 population. The genetic position of ari-e was further confirmed in the Hindmarsh × W1 DH population which was located between InDel-7 and InDel-17. As a result, the overlapping region of the two mapping populations flanked by InDel-16 and InDel-17 was defined as the candidate region spanning 0.58 Mb on the POPSEQ physical map. CONCLUSIONS: The current study demonstrated the SLAF-seq for SNP discovery and whole-genome shotgun sequencing for InDel development as an efficient approach to map complex genomic region for isolation of functional gene. The ari-e gene was fine mapped from 10 Mb to 0.58 Mb interval.


Assuntos
Genoma de Planta , Hordeum/genética , Mapeamento Cromossômico , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Ligação Genética , Marcadores Genéticos , Haploidia , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Fenótipo , Folhas de Planta/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA
13.
PLoS One ; 11(3): e0152128, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27028408

RESUMO

Barley is the only crop in the Poaceae family with adhering husks at maturity. The color of husk at barely development stage could influence the agronomic traits and malting qualities of grains. A barley mutant with a white husk was discovered from the malting barley cultivar Supi 3 and designated wh (white husk). Morphological changes and the genetics of white husk barley were investigated. Husks of the mutant were white at the heading and flowering stages but yellowed at maturity. The diastatic power and α-amino nitrogen contents also significantly increased in wh mutant. Transmission electron microscopy examination showed abnormal chloroplast development in the mutant. Genetic analysis of F2 and BC1F1 populations developed from a cross of wh and Yangnongpi 5 (green husk) showed that the white husk was controlled by a single recessive gene (wh). The wh gene was initially mapped between 49.64 and 51.77 cM on chromosome 3H, which is syntenic with rice chromosome 1 where a white husk gene wlp1 has been isolated. The barley orthologous gene of wlp1 was sequenced from both parents and a 688 bp deletion identified in the wh mutant. We further fine-mapped the wh gene between SSR markers Bmac0067 and Bmag0508a with distances of 0.36 cM and 0.27 cM in an F2 population with 1115 individuals of white husk. However, the wlp1 orthologous gene was mapped outside the interval. New candidate genes were identified based on the barley genome sequence.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Genes de Plantas , Hordeum/genética , Sequência de Bases , Deleção de Sequência
14.
BMC Genomics ; 16: 927, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26573602

RESUMO

BACKGROUND: sdw1/denso is one of the most important and useful semi-dwarf genes in barley breeding. At least four sdw1/denso alleles have been reported and HvGA20ox 2 is considered as the candidate gene. Up to date, results of studies have not univocally proven the genetic relationship between sdw1/denso and HvGA20ox 2 . RESULTS: In the present study, a complete deletion of Morex_contig_40861 including both HvGA20ox 2 and Mloc_56463 genes was identified at the sdw1 locus from a semi-dwarf mutant Riso no. 9265. Expression of the genes encoding gibberellin biosynthesis (HvGA20ox 1 and HvGA3ox 2 ) were increased in the mutant compared to the wild type Bomi, while the expression of GA catabolic gene HvGA2ox 3 was decreased. Over-expression of HvGA20ox 2 could rescue the semi-dwarf phenotype and increase GAs concentration. CONCLUSIONS: We confirmed that a GA biosynthetic enzyme HvGA20ox2, acted as GA 20-oxidase, is the functional gene for the sdw1/denso semi-dwarfism. Lose of HvGA20ox 2 is partially compensated by HvGA20ox 1 and further feedback is regulated by gibberellin. We also deduced that the sdw1/denso allele itself affects later heading owing to its reduced endogenous GAs concentration.


Assuntos
Hordeum/genética , Deleção de Genes , Genes de Plantas , Hordeum/anatomia & histologia , Mutação
15.
Theor Appl Genet ; 128(5): 943-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25773294

RESUMO

KEY MESSAGE: One major QTL-controlling malt extract was identified on 2H, based on the data from four different environments and a large number of DH lines, determining 48% of phenotypic variation. This QTL is of a high value for marker-assisted selection. Improving malting quality traits is one of the major breeding objectives for barley breeding programmes. Among different quality traits, malt extract is one of the most important, determining the yield of beer production. The use of molecular markers linked to loci affecting the quality traits can greatly improve selection efficiency. However, the discovery of closely linked markers relies on not only the availability of the loci, but the accuracy of phenotyping. In this experiment, 188 doubled-haploid lines derived from the cross between a Japanese malting barley and a Chinese feed barley were grown in four different environments (two sites × 2 years). Different quality traits were determined and used to map QTL for these traits. Several QTLs were identified for different quality traits. One major QTL-controlling malt extract was identified on 2H and determined 48% of phenotypic variation with the closest marker of GBM1121. This QTL was consistently expressed in all four environments and is of a high value for marker-assisted selection in malting barley breeding.


Assuntos
Mapeamento Cromossômico , Cruzamentos Genéticos , Hordeum/genética , Locos de Características Quantitativas , Cruzamento , Meio Ambiente , Ligação Genética , Haploidia , Repetições de Microssatélites , Fenótipo
16.
PLoS One ; 9(2): e90144, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587247

RESUMO

INTRODUCTION: Reducing plant height has played an important role in improving crop yields. The success of a breeding program relies on the source of dwarfing genes. For a dwarfing or semi-dwarfing gene to be successfully used in a breeding program, the gene should have minimal negative effects on yield and perform consistently in different environments. METHODS: In this study, 182 doubled haploid lines, generated from a cross between TX9425 and Naso Nijo, were grown in six different environments to identify quantitative trait loci (QTL) controlling plant height and investigate QTL × environments interaction. RESULTS: A QTL for plant was identified on 7H. This QTL showed no significant effects on other agronomic traits and yield components and consistently expressed in the six environments. A sufficient allelic effect makes it possible for this QTL to be successfully used in breeding programs.


Assuntos
Cruzamento , Cromossomos de Plantas , Hordeum/genética , Locos de Características Quantitativas , Alelos , Mapeamento Cromossômico , Meio Ambiente , Interação Gene-Ambiente , Hordeum/anatomia & histologia , Fenótipo
17.
J Zhejiang Univ Sci B ; 11(10): 792-800, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20872987

RESUMO

The genetic diversity and relationship among 40 elite barley varieties were analyzed based on simple sequence repeat (SSR) genotyping data. The amplified fragments from SSR primers were highly polymorphic in the barley accessions investigated. A total of 85 alleles were detected at 35 SSR loci, and allelic variations existed at 29 SSR loci. The allele number per locus ranged from 1 to 5 with an average of 2.4 alleles per locus detected from the 40 barley accessions. A cluster analysis based on the genetic similarity coefficients was conducted and the 40 varieties were classified into two groups. Seven malting barley varieties from China fell into the same subgroup. It was found that the genetic diversity within the Chinese malting barley varieties was narrower than that in other barley germplasm sources, suggesting the importance and feasibility of introducing elite genotypes from different origins for malting barley breeding in China.


Assuntos
Hordeum/genética , Sequências Repetitivas de Ácido Nucleico , Cruzamento , Marcadores Genéticos , Variação Genética , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...