Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Surg ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652275

RESUMO

BACKGROUND: The safety and efficacy of neoadjuvant immunochemotherapy (nICT) for locally advanced gastric cancer (LAGC) remain controversial. METHODS: Patients with LAGC who received either nICT or neoadjuvant chemotherapy (nCT) at 3 tertiary referral teaching hospitals in China between January 2016 and October 2022 were analysed. After propensity-score matching (PSM), comparing the radiological response, pathological response rate, perioperative outcomes, and early recurrence between the two groups. RESULTS: After PSM, 585 patients were included, with 195 and 390 patients comprising the nICT and nCT groups, respectively. The nICT group exhibited a higher objective response rate (79.5% versus [vs.] 59.0%; P<0.001), pathological complete response rate (14.36% vs. 6.41%; P=0.002) and major pathological response rate (39.49% vs. 26.15%; P=0.001) compared with the nCT group. The incidence of surgical complications (17.44% vs. 16.15%, P=0.694) and proportion of perioperative textbook outcomes (80.0% vs. 81.0%; P=0.767) were similar in both groups. The nICT group had a significantly lower proportion of early recurrence than the nCT group (29.7% vs. 40.8%; P=0.047). Furthermore, the multivariable logistic analysis revealed that immunotherapy was an independent protective factor against early recurrence (odds ratio 0.62 [95% CI 0.41-0.92]; P=0.018). No significant difference was found in neoadjuvant therapy drug toxicity between the two groups (51.79% vs. 45.38%; P=0.143). CONCLUSIONS: Compared with nCT, nICT is safe and effective, which significantly enhanced objective and pathological response rates, and reduced the risk for early recurrence among patients with LAGC. TRIAL REGISTRATION: Clinical Trials.gov.

2.
Cell Death Discov ; 10(1): 101, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413579

RESUMO

Pancreatic ductal adenocarcinoma (PDA) mortality is primarily attributed to metastasis and chemotherapy resistance. In this research, the long non-coding RNA MACC1-AS1 was studied, playing a significant role in regulating lipid oxidation processes. This regulation could further lead to the inhibition of ferroptosis induced by chemotherapeutic drugs, making it a contributing factor to gemcitabine resistance in PDA. In both gemcitabine-resistant PDA patients and mouse models, the elevated expression level of MACC1-AS1 in the tumors was noted. Additionally, overexpression of MACC1-AS1 in pancreatic cancer cells was found to enhance tolerance to gemcitabine and suppress ferroptosis. Proteomic analysis of drug-resistant pancreatic cells revealed that overexpressed MACC1-AS1 inhibited the ubiquitination degradation of residues in the protein kinase STK33 by MDM4. Furthermore, its accumulation in the cytoplasm activated STK33, further activating the ferroptosis-suppressing proteins GPX4, thereby counteracting gemcitabine-induced cellular oxidative damage. These findings suggested that the long non-coding RNA MACC1-AS1 could play a significant role in the ability of pancreatic cancer cells to evade iron-mediated ferroptosis induced by gemcitabine. This discovery holds promise for developing clinical therapeutic strategies to combat chemotherapy resistance in pancreatic cancer.

3.
ACS Omega ; 9(3): 4085-4095, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284087

RESUMO

The water-oil-rock system's surfactant and electrostatic interactions are essential for removing oil droplets from rock substrates. Our work illustrates the impact of surface charge on the oil contact angle in an ideal system comprising silica, water, and dodecane; smaller contact angles are observed for more polar substrates. Modifying the polarity of the model silica surface allows for the observation of the creation of heteromolecule channels and the process of stripping crude oil while accounting for the impacts of water flow and different types of surfactant molecules. In solutions containing ionic surfactants, the injection and diffusion of water molecules between the oil layer and the silica substrate are facilitated by the disturbance of the oil molecules by the surfactant molecules. By comparing different surfactants in water flow, the characterization of water molecular channels and the stripping process of crude oil can be observed. The disruption of oil molecules by the surfactant molecules has been found to enhance the injection and diffusion of water molecules between the oil layer and the silica substrate in solutions containing ionic surfactants. The size of the contact angle and the extension of the water channel are simultaneously greatly influenced by the surfactant's molecular characteristics and the substrate's polarity. These simulation results show that several factors influence the process of water molecule channel creation that water molecules diffuse, and the detachment of oil from the silica substrate is facilitated by the migration of surfactants to the bottom of the oil molecule and the electrostatic interactions between the water molecules and the silica substrate.

4.
Surg Innov ; 30(5): 664-667, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36916661

RESUMO

BACKGROUND/NEED: Laparoscopic rectal cancer surgery (LRCS) has become a preferred approach for its minimal invasion and fast postoperative recovery. But it is challenging for the tumors of the middle and lower rectum, especially for overweight or obese patients. METHODOLOGY: We present a space expander of laparoscopic rectal cancer surgery, which is a simple tool to widen the perirectal space, as to facilitate the procedure of total mesorectal excision (TME) during the rectal cancer surgery. It has several advantages of lower demand for an assistant, less risk of surgical complications and good feasibility. DEVICE DESCRIPTION: It is designed as a cylindrical shape, and it is the first invented device to help surgeons safely perform accurate TME on overweight or obese patients during LRCS. With this method, we are able to dissect the rectal wall circumferentially in a safe and quick way. PRELIMINARY RESULTS: Our previous pig experiments indicated that the learning curve for this technique was as short as 10 minutes. CURRENT STATUS: Further clinical trials will be conducted on its efficacy and safety in the future.


Assuntos
Laparoscopia , Neoplasias Retais , Humanos , Animais , Suínos , Sobrepeso/complicações , Sobrepeso/cirurgia , Neoplasias Retais/cirurgia , Reto/cirurgia , Laparoscopia/métodos , Obesidade/cirurgia , Obesidade/complicações , Resultado do Tratamento , Complicações Pós-Operatórias/etiologia
5.
Opt Express ; 31(4): 5242-5256, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823810

RESUMO

Based on the intramolecular energy transfer mechanism between organic ligand TMHD (2, 2, 6, 6-tetramethyl-3, 5-heptanedione) and central Er3+ ions, optical gains at 1.55 µm were demonstrated in three structures of polymer waveguides using complex Er(TMHD)3-doped polymethylmethacrylate (PMMA) as the active material. With the excitation of two low-power UV light-emitting diodes (LEDs) instead of 980 or 1480 nm lasers, relative gains of 3.5 and 4.1 dB cm-1 were achieved in a 1-cm-long rectangular waveguide with an active core of Er(TMHD)3-doped PMMA polymer. Meanwhile, relative gain of 3.0 dB cm-1 was obtained in an evanescent-field waveguide with cross-section of 4 × 4 µm2 using passive SU-8 polymer as core and a ∼1-µm-thick Er(TMHD)3-doped PMMA as upper cladding. By growing a 100 nm thick aluminum mirror and active lower cladding, the optical gain was doubled to 6.7 dB cm-1 in evanescent-field waveguides because of the stimulated excitation of Er3+ ions in the upper and lower cladding and the improved absorption efficiency.

6.
Small Methods ; 7(4): e2201366, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36703549

RESUMO

Based on the molecular energy transfer mechanism, relative gains at 1067 and 637 nm wavelengths are achieved in thermally activated delayed fluorescence molecule AQ(PhDPA)2 and Nd complex with chelating phosphine oxide as ligands codoped polymer waveguides, with the excitation of low-power UV light-emitting diodes (LEDs) instead of traditional semiconductor lasers as pump sources. For AQ(PhDPA)2 -Nd(DBTTA)3 (DBFDPO) (DBTTA = dibenzotetrathienoacene, DBFDPO = 4,6-bis (diphenylphosphoryl) dibenzofuran) -codoped polymethylmethacrylate (PMMA), and AQ(PhDPA)2 -Nd(DBTTA)3 (FDPO) (FDPO = 9,9-bis (diphenylphosphorylphenyl) fluorene)-codoped PMMA polymers with a mass ratio of 1:4 respectively, when they are spin-coated as upper claddings, the relative gains of 2.2 and 1.8 dB cm-1 at 1067 nm are obtained in evanescent-field waveguides with cross-section of 4 × 8 µm2 under excitation of 300 mW 405 nm LED, and the gains of 3.9 and 4.9 dB cm-1 at 637 nm are achieved with pumping of 530 mW 450 nm LED respectively. By growing a 100 nm-thick aluminum reflector with the waveguides, the optical gain at 1067 and 637 nm can be enhanced to 3.5 and 6.1 dB cm-1 , corresponding to AQ(PhDPA)2 -Nd(DBTTA)3 (DBFDPO) and AQ(PhDPA)2 -Nd(DBTTA)3 (FDPO)-codoped PMMA polymers, respectively.

7.
Front Chem ; 10: 867928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860632

RESUMO

Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of compounds, self-masked aldehyde inhibitors (SMAIs) which are based on the dipeptide aldehyde inhibitor (Cbz-Phe-Phe-CHO, 1), for which the P1 Phe group contains a 1'-hydroxy group, effectively, an o-tyrosinyl aldehyde (Cbz-Phe-o-Tyr-CHO, 2; (Li et al. (2021) J. Med. Chem. 64, 11,267-11,287)). Compound 2 and other SMAIs exist in aqueous mixtures as stable δ-lactols, and apparent catalysis by the cysteine protease cruzain, the major cysteine protease of Trypanosoma cruzi, results in the opening of the lactol ring to afford the aldehydes which then form reversible thiohemiacetals with the enzyme. These SMAIs are also potent, time-dependent inhibitors of human cathepsin L (K i = 11-60 nM), an enzyme which shares 36% amino acid identity with cruzain. As inactivators of cathepsin L have recently been shown to be potent anti-SARS-CoV-2 agents in infected mammalian cells (Mellott et al. (2021) ACS Chem. Biol. 16, 642-650), we evaluated SMAIs in VeroE6 and A549/ACE2 cells infected with SARS-CoV-2. These SMAIs demonstrated potent anti-SARS-CoV-2 activity with values of EC50 = 2-8 µM. We also synthesized pro-drug forms of the SMAIs in which the hydroxyl groups of the lactols were O-acylated. Such pro-drug SMAIs resulted in significantly enhanced anti-SARS-CoV-2 activity (EC50 = 0.3-0.6 µM), demonstrating that the O-acylated-SMAIs afforded a level of stability within infected cells, and are likely converted to SMAIs by the action of cellular esterases. Lastly, we prepared and characterized an SMAI in which the sidechain adjacent to the terminal aldehyde is a 2-pyridonyl-alanine group, a mimic of both phenylalanine and glutamine. This compound (9) inhibited both cathepsin L and 3CL protease at low nanomolar concentrations, and also exerted anti-CoV-2 activity in an infected human cell line.

8.
Ann Palliat Med ; 11(5): 1736-1751, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35672891

RESUMO

BACKGROUND: Melanoma is a malignant tumor with poor prognosis and increasing global incidence. Little is known about the burden of melanoma in eastern Chinese cities, as the results of previous studies are inconsistent or unclear. METHODS: In this study, we collected incidence rate data from the Ningbo National Health Information Platform, diagnostic data from the Ningbo Clinicopathological Diagnosis Center, and other relevant data from the Ningbo Bureau of Statistics to evaluate temporal trends and geographic variation in melanoma incidence and to analyze the relationship between melanoma incidence and medical resource availability. RESULTS: The incidence of melanoma in Ningbo has increased significantly in the past 8 years. In 2018, melanoma incidence in Ningbo was 521.67% higher than that in 2011, which was higher than the increase in the national rate. This may be a result of our study including early melanoma, which has a faster increase rate than invasive melanoma. The incidence rate of melanoma in urban areas was significantly higher than that in rural districts. From 2011 to 2018, the incidence rate in rural districts increased by 794.15%, which was significantly higher than the incidence rate increase in urban areas (245.03%). CONCLUSIONS: All indicators relating to medical resources had a significant positive impact on melanoma incidence, indicating that the low incidence of melanoma is partly due to a lack of medical resources, which can lead to delayed treatment and increased disability-adjusted life years (DALYs). Therefore, it is necessary to continue to strengthen investment in medical resources, especially in China's rural areas and western regions where medical resources are less available.


Assuntos
Melanoma , Neoplasias Cutâneas , China/epidemiologia , Cidades , Humanos , Incidência , Melanoma/epidemiologia , Neoplasias Cutâneas/epidemiologia
9.
Chem Commun (Camb) ; 57(67): 8352-8355, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34337637

RESUMO

By repurposing DNICs designed for other medicinal purposes, the possibility of protease inhibition was investigated in silico using AutoDock 4.2.6 (AD4) and in vitro via a FRET protease assay. AD4 was validated as a predictive computational tool for coordinatively unsaturated DNIC binding using the only known crystal structure of a protein-bound DNIC, PDB- (calculation RMSD = 1.77). From the in silico data the dimeric DNICs TGTA-RRE, [(µ-S-TGTA)Fe(NO)2]2 (TGTA = 1-thio-ß-d-glucose tetraacetate) and TG-RRE, [(µ-S-TG)Fe(NO)2]2 (TG = 1-thio-ß-d-glucose) were identified as promising leads for inhibition via coordinative inhibition at Cys-145 of the SARS-CoV-2 Main Protease (SC2Mpro). In vitro studies indicate inhibition of protease activity upon DNIC treatment, with an IC50 of 38 ± 2 µM for TGTA-RRE and 33 ± 2 µM for TG-RRE. This study presents a simple computational method for predicting DNIC-protein interactions; the in vitro study is consistent with in silico leads.


Assuntos
Inibidores Enzimáticos/farmacologia , Ferro/farmacologia , Óxidos de Nitrogênio/farmacologia , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Ferro/química , Modelos Moleculares , Estrutura Molecular , Óxidos de Nitrogênio/química , SARS-CoV-2/enzimologia
10.
J Med Chem ; 64(15): 11267-11287, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288674

RESUMO

Cysteine proteases comprise an important class of drug targets, especially for infectious diseases such as Chagas disease (cruzain) and COVID-19 (3CL protease, cathepsin L). Peptide aldehydes have proven to be potent inhibitors for all of these proteases. However, the intrinsic, high electrophilicity of the aldehyde group is associated with safety concerns and metabolic instability, limiting the use of aldehyde inhibitors as drugs. We have developed a novel class of self-masked aldehyde inhibitors (SMAIs) for cruzain, the major cysteine protease of the causative agent of Chagas disease-Trypanosoma cruzi. These SMAIs exerted potent, reversible inhibition of cruzain (Ki* = 18-350 nM) while apparently protecting the free aldehyde in cell-based assays. We synthesized prodrugs of the SMAIs that could potentially improve their pharmacokinetic properties. We also elucidated the kinetic and chemical mechanism of SMAIs and applied this strategy to the design of anti-SARS-CoV-2 inhibitors.


Assuntos
Aldeídos/química , Tratamento Farmacológico da COVID-19 , Doença de Chagas/tratamento farmacológico , Inibidores de Cisteína Proteinase/uso terapêutico , SARS-CoV-2/enzimologia , Trypanosoma cruzi/enzimologia , Aldeídos/metabolismo , Aldeídos/farmacologia , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/química , Desenho de Fármacos , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , SARS-CoV-2/efeitos dos fármacos , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos
11.
ACS Chem Biol ; 16(4): 642-650, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33787221

RESUMO

Host-cell cysteine proteases play an essential role in the processing of the viral spike protein of SARS coronaviruses. K777, an irreversible, covalent inactivator of cysteine proteases that has recently completed phase 1 clinical trials, reduced SARS-CoV-2 viral infectivity in several host cells: Vero E6 (EC50< 74 nM), HeLa/ACE2 (4 nM), Caco-2 (EC90 = 4.3 µM), and A549/ACE2 (<80 nM). Infectivity of Calu-3 cells depended on the cell line assayed. If Calu-3/2B4 was used, EC50 was 7 nM, but in the ATCC Calu-3 cell line without ACE2 enrichment, EC50 was >10 µM. There was no toxicity to any of the host cell lines at 10-100 µM K777 concentration. Kinetic analysis confirmed that K777 was a potent inhibitor of human cathepsin L, whereas no inhibition of the SARS-CoV-2 cysteine proteases (papain-like and 3CL-like protease) was observed. Treatment of Vero E6 cells with a propargyl derivative of K777 as an activity-based probe identified human cathepsin B and cathepsin L as the intracellular targets of this molecule in both infected and uninfected Vero E6 cells. However, cleavage of the SARS-CoV-2 spike protein was only carried out by cathepsin L. This cleavage was blocked by K777 and occurred in the S1 domain of the SARS-CoV-2 spike protein, a different site from that previously observed for the SARS-CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of cathepsin L-mediated viral spike protein processing.


Assuntos
Antivirais/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Fenilalanina/farmacologia , Piperazinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Compostos de Tosil/farmacologia , Animais , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Testes de Sensibilidade Microbiana , Domínios Proteicos , Proteólise , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Internalização do Vírus/efeitos dos fármacos
12.
Biomed Pharmacother ; 137: 111263, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33516071

RESUMO

BACKGROUND & AIMS: Hepatopulmonary syndrome (HPS) is characterized by pulmonary vasodilation and arterial blood oxygen desaturation in patients with chronic liver disease. Generally, common bile duct ligation (CBDL) rats are a suitable experimental model for studying hepatopulmonary syndrome. Our previous study demonstrated that endotoxin surges markedly, followed by bacterial translocation and the loss of liver immune function in all the stages of CBDL, thereby contributing to the pathogenesis of HPS. However, the mechanisms behind the increase of the endotoxin and how to alleviate it have not yet been elucidated. Pulmonary injury induced by increased bilirubin, endotoxin, and inflammatory mediators occurs in the early and later stages of CBDL. This study assessed the effects of Tea polyphenols (TP) and Levofloxacin on endotoxin reduction and suppression of lung injury in HPS rats in the long and short term, respectively. METHODS: Morphological change of pulmonary injury, HPS relative index, endotoxin concentration, and the activation extent of Malondialdehyde (MDA) and Myeloperoxidase (MPO) were evaluated in CBDL rats with or without TP and Levofloxacin for three weeks or six weeks. The inflammation factors of serum, lung tissue, and BALF were then compared at the same condition for the two time periods. This was followed by adoption of the network pharmacology approach, which was mainly composed of active component gathering, target prediction, HPS gene collection, network analysis, and gene enrichment analysis. Finally, the mRNA and protein levels of the inflammatory factors were studied and relative signaling expression was assessed using RT-PCR and Western blot analysis. RESULTS: The obtained results indicated that the pulmonary injury manifestation was perceived and endotoxin, MDA, and MPO activation were markedly increased in the early and later stages of CBDL. TP and Levofloxacin treatment alleviated endotoxin infection and inflammation factor expression three weeks and six weeks after CBDL. In addition, Levofloxacin displayed a short time anti-bacterial effect, while TP exerted a long period function. TP and Levofloxacin also reduced TNF-α, TGF-ß, IL-1ß, PDGF-BB, NO, ICAM-1, and ET-1 expression on the mRNA or protein expression. With regard to the pharmacological mechanism, the network analysis indicated that 12 targets might be the therapeutic targets of TP and Levofloxacin on HPS, namely ET-1, NOs3, VEGFa, CCl2, TNF, Ptgs2, Hmox1, Alb, Ace, Cav1, and Mmp9. The gene enrichment analysis implied that TP and Levofloxacin probably benefited patients with HPS by modulating pathways associated with the AGE-RAGE signaling pathway, the TNF signaling pathway, the HIF-1 signaling pathway, the VEGF signaling pathway, and the IL-17 signaling pathway, Rheumatoid arthritis, Fluid shear stress, and atherosclerosis. Finally, the TNF-α level was mainly diminished on the protein level following CBDL. CONCLUSIONS: TP and Levofloxacin could alleviate pulmonary injury for short and long period, respectively, while at the same time preventing endotoxin and the development of HPS in CBDL rats. These effects are possibly associated with the regulation of the Endotoxin -TNF-α pathways.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Endotoxinas/metabolismo , Síndrome Hepatopulmonar/prevenção & controle , Levofloxacino/farmacologia , Lesão Pulmonar/prevenção & controle , Pulmão/efeitos dos fármacos , Polifenóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Translocação Bacteriana , Camellia sinensis , Ducto Colédoco/cirurgia , Modelos Animais de Doenças , Síndrome Hepatopulmonar/metabolismo , Síndrome Hepatopulmonar/microbiologia , Síndrome Hepatopulmonar/patologia , Ligadura , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/microbiologia , Lesão Pulmonar/patologia , Masculino , Mapas de Interação de Proteínas , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
13.
bioRxiv ; 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33140046

RESUMO

K777 is a di-peptide analog that contains an electrophilic vinyl-sulfone moiety and is a potent, covalent inactivator of cathepsins. Vero E6, HeLa/ACE2, Caco-2, A549/ACE2, and Calu-3, cells were exposed to SARS-CoV-2, and then treated with K777. K777 reduced viral infectivity with EC50 values of inhibition of viral infection of: 74 nM for Vero E6, <80 nM for A549/ACE2, and 4 nM for HeLa/ACE2 cells. In contrast, Calu-3 and Caco-2 cells had EC50 values in the low micromolar range. No toxicity of K777 was observed for any of the host cells at 10-100 µM inhibitor. K777 did not inhibit activity of the papain-like cysteine protease and 3CL cysteine protease, encoded by SARS-CoV-2 at concentrations of ≤ 100 µM. These results suggested that K777 exerts its potent anti-viral activity by inactivation of mammalian cysteine proteases which are essential to viral infectivity. Using a propargyl derivative of K777 as an activity-based probe, K777 selectively targeted cathepsin B and cathepsin L in Vero E6 cells. However only cathepsin L cleaved the SARS-CoV-2 spike protein and K777 blocked this proteolysis. The site of spike protein cleavage by cathepsin L was in the S1 domain of SARS-CoV-2 , differing from the cleavage site observed in the SARS CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of viral spike protein processing.

14.
World J Clin Cases ; 8(15): 3320-3328, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32874988

RESUMO

BACKGROUND: Isolated splenic metastasis is a rare clinical entity. Multiple metastases in the spleen after radical colon resection in a patient who subsequently underwent a second local resection for isolated metachronous splenic metastasis are exceedingly rare. CASE SUMMARY: We report a colon cancer patient who underwent laparoscopic radical colon resection 14 mo previously, and subsequently underwent a second local resection due to local recurrence detected by elevated serum carcinoembryonic antigen (CEA) and positron emission tomography (PET). However, multiple metastases in the spleen were found 7 mo later by elevated serum CEA and PET-magnetic resonance imaging. Then the patient underwent total laparoscopic splenectomy. Local tumor recurrence and splenic metastasis from colorectal cancer (CRC) were found by postoperative pathology. Genetic analysis of these recurrent and metastatic tissues showed KRAS exon2, APC exon16 and TP53 exon6 missense mutations, but no mutations of NRAS, KRAF, EGFR, ERBB2, MET, MLH1, MSH2 and MSH6 were detected. Chemotherapy and target therapy were administered after multiple disciplinary team (MDT) consultation, and no tumor recurrence has been observed to date. We also reviewed the literature by conducting a search of the PubMed database using the following key words: CRC, splenic metastasis, isolated, and review. We identified 34 relevant papers, which included 28 cases of metachronous metastasis and 6 cases of simultaneous metastasis. CONCLUSION: Close monitoring of serum CEA levels is crucial for the detection of isolated splenic metastases after colon surgery. In terms of overall survival and progression-free survival, MDT plays an important role in the entire process of disease management.

15.
Sci Rep ; 8(1): 8251, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844467

RESUMO

Brown adipose tissue (BAT) is a specialized thermogenic organ in mammals. The ability of BAT mitochondria to generate heat in response to cold-challenge to maintain core body temperature is essential for organismal survival. While cold activated BAT mitochondrial biogenesis is recognized as critical for thermogenic adaptation, the contribution of mitochondrial quality control to this process remains unclear. Here, we show mitophagy is required for brown adipocyte mitochondrial homeostasis during thermogenic adaptation. Mitophagy is significantly increased in BAT from cold-challenged mice (4 °C) and in ß-agonist treated brown adipocytes. Blockade of mitophagy compromises brown adipocytes mitochondrial oxidative phosphorylation (OX-PHOS) capacity, as well as BAT mitochondrial integrity. Mechanistically, cold-challenge induction of BAT mitophagy is UCP1-dependent. Furthermore, our results indicate that mitophagy coordinates with mitochondrial biogenesis, maintaining activated BAT mitochondrial homeostasis. Collectively, our in vivo and in vitro findings identify mitophagy as critical for brown adipocyte mitochondrial homeostasis during cold adaptation.


Assuntos
Adipócitos/fisiologia , Tecido Adiposo Marrom/fisiologia , Hipotermia/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Termogênese , Proteína Desacopladora 1/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas , Temperatura Baixa , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Biogênese de Organelas , Fosforilação Oxidativa , Proteína Desacopladora 1/genética
16.
Am J Cancer Res ; 6(11): 2502-2513, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27904767

RESUMO

MicroRNAs have been proven to play important roles in many biological processes such as cellular growth and differentiation, apoptosis, and modulation of host response to viral infection. In the present study, we find that the expression of miR-146a was decreased in hepatocellular carcinoma (HCC) tissues compared with corresponding adjacent tissues, and the expression level in HCC cell lines was lower than in a normal liver cell. Over-expression suppressed the proliferation and invasion of HCC cells. In addition, luciferase reporter assays and western blotting confirmed that miR-146a directly target TRAF6 which attenuated the effect of miR-146a on cell proliferation and invasion in HepG2 and SMMC7721 cells. Meanwhile, lentivirus-mediated increased expression of miR146a repressed tumor formation in nude mice. Taken together, our findings demonstrate that miR-146a suppresses HCC by down-regulating TRAF6. We also discovered that miR-146a may represent a novel potential candidate of the HCC carcinoma diagnostic marker in the long term.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...