Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microorganisms ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674715

RESUMO

Bacillus velezensis has gained increasing recognition as a probiotic for improving animal growth performance and gut health. We identified six B. velezensis strains from sixty Bacillus isolates that were isolated from the cecal samples of fifteen different chicken breeds. We characterized the probiotic properties of these six B. velezensis strains. The effect of a selected strain (B. velezensis CML532) on chicken growth performance under normal feeding and Clostridium perfringens challenge conditions was also evaluated. The results revealed that the six B. velezensis strains differed in their probiotic properties, with strain CML532 exhibiting the highest bile salt and acid tolerance and high-yield enzyme and antibacterial activities. Genomic analyses showed that genes related to amino acid and carbohydrate metabolism, as well as genes related to starch and cellulose hydrolysis, were abundant in strain CML532. Dietary supplementation with strain CML532 promoted chicken growth, improved the gut barrier and absorption function, and modulated the gut microbiota. Under the C. perfringens challenge condition, strain CML532 alleviated intestinal damage, reduced ileal colonization of C. perfringens, and also improved chicken growth performance. Collectively, this study demonstrated that the newly isolated B. velezensis strain is a promising probiotic with beneficial effects on chicken growth performance and gut health.

2.
J Dairy Sci ; 107(3): 1603-1619, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37769949

RESUMO

Calf diarrhea, a common disease mainly induced by Escherichia coli infection, is one of the main reasons for nonpredator losses. Hence, an effective nonantibacterial approach to prevent calf diarrhea has become an emerging requirement. This study evaluated the microalgae Schizochytrium sp. (SZ) and lactoferrin (LF) as a nutrient intervention approach against E. coli O101:K99-induced preweaning calve diarrhea. Fifty 1-d-old male Holstein calves were randomly divided into 5 groups (n = 10): (1) control, (2) blank (no supplement or challenge), (3) 1 g/d LF, (4) 20 g/d SZ, or (5) 1 g/d LF plus 20 g/d SZ (LFSZ). The experimental period lasted 14 d. On the morning of d 7, calves were challenged with 1 × 1011 cfu of E. coli O101:K99, and rectum feces were collected on 3, 12, 24, and 168 h postchallenge for the control, LF, SZ, and LFSZ groups. The rectal feces of the blank group were collected on d 14. Data were analyzed using the mixed procedure of SAS (version 9.4; SAS Institute Inc.). The E. coli K99 challenge decreased the average daily gain (ADG) and increased feed-to-gain ratio (F:G) and diarrhea frequency (control vs. blank). Compared with the control group, the LFSZ group had a higher ADG and lower F:G, and the LFSZ and SZ groups had lower diarrhea frequency compared with the control group. In addition, the LFSZ and SZ groups have no differences in diarrhea frequency compared with the blank group. Compared with the control group, the blank group had lower serum nitric oxide (NO), endothelin-1, d-lactic acid (D-LA), and lipopolysaccharide (LPS) concentrations, as well as serum IgG, IL-1ß, IL-6, IL-10, and TNF-α levels on d 7 and 14. On d 7, compared with the control group, all treatment groups had lower serum NO level, the SZ group had a lower serum D-LA concentration, and the LF and LFSZ groups had lower serum LPS concentration. On d 14, compared with the control group, the fecal microbiota of the blank group had lower Shannon, Simpson, Chao1, and ACE indexes, the LFSZ group had lower Shannon and Simpson indexes, the SZ and LFSZ groups had a higher Chao1 index, and all treatment groups had a higher ACE index. In fecal microbiota, Bifidobacterium and Actinobacteria were negatively associated with IL-10 and d-lactate, while Akkermansia was negatively associated with endothelin-1 and positively correlated with LPS, fecal scores, and d-lactate levels. Our results indicated that LF and SZ supplements could alleviate E. coli O101:K99-induced calf diarrhea individually or in combination. Supplementing 1 g/d LF and 20 g/d SZ could be a potential nutrient intervention approach to prevent bacterial diarrhea in calves.


Assuntos
Escherichia coli , Interleucina-10 , Masculino , Animais , Bovinos , Lactoferrina/farmacologia , Endotelina-1 , Lipopolissacarídeos , Diarreia/prevenção & controle , Diarreia/veterinária , Suplementos Nutricionais , Ácido Láctico , Óxido Nítrico , Ração Animal , Dieta/veterinária , Desmame
3.
Sci Total Environ ; 912: 169057, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056640

RESUMO

Maintaining animal gut health through modulating the gut microbiota is a constant need when antibiotics are not used in animal feed during the food animal production process. Prebiotics is regarded as one of the most promising antibiotic alternatives for such purpose. As an attractive prebiotic, the role and mechanisms of neoagarooligosaccharides (NAOS) in promoting animal growth and gut health have not been elucidated. In this study, we first cloned and expressed marine bacterial ß-agarase in yeast to optimize the NAOS preparation and then investigated the role and the underlying mechanisms of the prepared NAOS in improving chicken gut health and function. The marine bacterial ß-agarase PDE13B was expressed in Pichia pastoris GS115 and generated even-numbered NAOS. Dietary the prepared NAOS promoted chicken growth and improved intestinal morphology, its barrier, and digestion capabilities, and absorption function. Metagenomic analysis indicated that NAOS modulated the chicken gut microbiota structure and function, and microbial interactions, and promoted the growth of spermidine-producing bacteria especially Faecalibacterium. Through integration of gut metagenome, gut content metabolome, and gut tissue transcriptome, we established connections among NAOS, gut microbes, spermidine, and chicken gut gene expression. The spermidine regulation of genes related to autophagy, immunity, and inflammation was further confirmed in chicken embryo intestinal epithelium cells. We also verified that NAOS can be utilized by Faecalibacterium prausnitzii to grow and produce spermidine in in vitro experiments. Collectively, we provide a systematic investigation of the role of NAOS in regulating gut health and demonstrate the microbial spermidine-mediated mechanism involved in prebiotic effects of NAOS, which lays foundation for future use of NAOS as a new antibiotic alternative in animal production.


Assuntos
Galinhas , Microbioma Gastrointestinal , Embrião de Galinha , Animais , Galinhas/microbiologia , Espermidina/farmacologia , Faecalibacterium , Antibacterianos/farmacologia
4.
Chin Med Sci J ; 38(4): 286-296, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38097345

RESUMO

Metabolic associated fatty liver disease (MAFLD) has become a prevalent chronic liver disease worldwide because of lifestyle and dietary changes. Gut microbiota and its metabolites have been shown to play a critical role in the pathogenesis of MAFLD. Understanding of the function of gut microbiota and its metabolites in MAFLD may help to elucidate pathological mechanisms, identify diagnostic markers, and develop drugs or probiotics for the treatment of MAFLD. Here we review the pathogenesis of MAFLD by gut microbiota and its metabolites and discuss the feasibility of treating MAFLD from the perspective of gut microbes.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Fígado Gorduroso/microbiologia , Humanos
5.
Pharmacol Res ; 196: 106928, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717681

RESUMO

The development of hyperuricemia (HUA) and gout is associated with dysbiosis of the gut microbiota. Quercetin can reduce serum uric acid levels and thus alleviate HUA by modulating the gut microbiota. However, the detailed mechanisms involved in this process are not fully understood. Here, we showed that quercetin significantly reduced the serum uric acid level in a chicken HUA model by altering the chicken cecal microbiota structure and function and increasing the abundance of Lactobacillus aviarius. An L. aviarius strain, CML180, was isolated from the quercetin-treated chicken gut microbiota. Strain characterization indicated that quercetin promoted the growth of L. aviarius CML180 and increased its adhesion, hydrophobicity, and co-aggregation abilities. Gavage of live L. aviarius CML180 to a mouse model of HUA-established by adenosine and potassium oxonate-reduced the serum uric acid level and alleviated HUA. The ability of L. aviarius CML180 to decrease the level of uric acid was due to its degradation of purine nucleosides, which are the precursors for uric acid production. A nucleoside hydrolase gene, nhy69, was identified from the genome of L. aviarius CML180, and the resulting protein, Nhy69, exhibited strong purine nucleoside-hydrolyzing activity at mesophilic temperature and neutral pH conditions. These findings provide mechanistic insights into the potential of quercetin to treat HUA or gout diseases via a specific gut microbe.

6.
J Anim Sci Biotechnol ; 14(1): 96, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394467

RESUMO

BACKGROUND: Alginate oligosaccharide (AOS) holds great potential as a novel feed supplement in farm animals. However, the effects of AOS on chicken health and the underlying mechanisms are not fully understood. This study aimed to optimize the enzymatic preparation of AOS by using bacterial alginate lyases expressed in yeast, investigate the effects of the prepared AOS on the growth performance and gut health of broiler chickens, and reveal the underlying mechanisms. RESULTS: Five alginate lyases from bacteria were cloned into Pichia pastoris GS115 and the alginate lyase PDE9 was expressed at relatively high yield, activity and stability in P. pastoris. Animal trials were carried out using 320 1-day-old male Arbor Acres broilers (four groups; 8 replicates/group × 10 chicks/replicate) receiving either a basal diet or the same diet supplemented with 100, 200 and 400 mg/kg PDE9-prepared AOS for 42 d. The results showed that dietary supplementation of 200 mg/kg AOS displayed the highest activity in promoting the birds' ADG and ADFI (P < 0.05). AOS ameliorated the intestinal morphology, absorption function and barrier function, as indicated by the enhanced (P < 0.05) intestinal villus height, maltase activity, and the expression of PEPT, SGLT1, ZNT1, and occludin. AOS also increased serum insulin-like growth factor-1, ghrelin (P < 0.05), and growth hormone (P < 0.1). Moreover, the concentrations of acetate, isobutyrate, isovalerate, valerate, and total SCFAs in cecum of birds fed AOS were significantly higher than the control birds (P < 0.05). Metagenomic analysis indicated that AOS modulated the chicken gut microbiota structure, function, and microbial interactions and promoted the growth of SCFAs-producing bacteria, for example, Dorea sp. 002160985; SCFAs, especially acetate, were found positively correlated with the chicken growth performance and growth-related hormone signals (P < 0.05). We further verified that AOS can be utilized by Dorea sp. to grow and to produce acetate in vitro. CONCLUSIONS: We demonstrated that the enzymatically produced AOS effectively promoted broiler chicken growth performance by modulating the chicken gut microbiota structure and function. For the first time, we established the connections among AOS, chicken gut microbiota/SCFAs, growth hormone signals and chicken growth performance.

7.
Environ Pollut ; 334: 122139, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419208

RESUMO

The discharge of a large amount of flotation reagents wastewater can cause significant environmental pollution. In this study, NiO/La-NaTaO3 nano-photocatalyst was prepared and applied to degrade synthetic flotation reagent ammonium dibutyl dithiophosphate wastewater. Various characterization results confirmed the successful synthesis of NiO/La-NaTaO3, and UV-vis DRS analysis revealed a band gap of 3.96 eV for 4 wt% NiO/2.5% La-NaTaO3. Under UV light, the degradation rate of 20 mg 4 wt% NiO/2.5% La-NaTaO3 photocatalyst reached its optimum within 4.5 h at pH=3, exhibiting a 1.45 times improvement compared to pure NaTaO3. Radical trapping experiments and EPR results showed that ·OH and·O2- showed major contribution to the degradation. Furthermore, photocatalytic mechanisms and toxicity evolution were investigated, demonstrating the potential application of photocatalytic methods for treating flotation reagent wastewater.


Assuntos
Organotiofosfatos , Águas Residuárias , Raios Ultravioleta
8.
Zhongguo Zhong Yao Za Zhi ; 47(3): 836-845, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35178967

RESUMO

The chemical constituents in the volatile oil of Syringa oblata were identified using GC-MS and NIST database. TCMSP and SwissTargetPrediction were employed to predict the potential targets of the active components in S. oblata. Through Online Mendelian Inheritance in Man(OMIM), GeneCards, and Kyoto Encyclopedia of Genes and Genomes(KEGG), we screened out the targets related to the prevention or treatment of angina pectoris by the volatile oil of S. oblata, and then used DAVID 6.8 to annotate the gene ontology(GO) terms and KEGG pathways. The "active components-targets-pathways" network was constructed in Cytoscape 3.6.0, and the key active components and targets of S. oblata were verified by Discovery Studio 2016. Forty-six chemical constituents were identified from the volatile oil of S. oblata; 198 potential targets of the active components and 1 138 targets associated with angina pectoris were predicted. A total of 71 common targets were shared by the active components and the disease, including cytochrome P450 19 A1(CYP19 A1) and prostaglandin G/H synthase 2(PTGS2). The KEGG pathways involved include PPAR, JAK-STAT, TNF, Toll-like receptor and NOD-like receptor signaling pathways. The active components in the volatile oil of S. oblata may play anti-inflammatory and anti-apoptosis roles. This study provides a reliable clue for further explanation of the effective components and the functioning mechanism of S. oblata in the treatment of angina pectoris.


Assuntos
Medicamentos de Ervas Chinesas , Syringa , Angina Pectoris , Medicamentos de Ervas Chinesas/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede
9.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-927967

RESUMO

The chemical constituents in the volatile oil of Syringa oblata were identified using GC-MS and NIST database. TCMSP and SwissTargetPrediction were employed to predict the potential targets of the active components in S. oblata. Through Online Mendelian Inheritance in Man(OMIM), GeneCards, and Kyoto Encyclopedia of Genes and Genomes(KEGG), we screened out the targets related to the prevention or treatment of angina pectoris by the volatile oil of S. oblata, and then used DAVID 6.8 to annotate the gene ontology(GO) terms and KEGG pathways. The "active components-targets-pathways" network was constructed in Cytoscape 3.6.0, and the key active components and targets of S. oblata were verified by Discovery Studio 2016. Forty-six chemical constituents were identified from the volatile oil of S. oblata; 198 potential targets of the active components and 1 138 targets associated with angina pectoris were predicted. A total of 71 common targets were shared by the active components and the disease, including cytochrome P450 19 A1(CYP19 A1) and prostaglandin G/H synthase 2(PTGS2). The KEGG pathways involved include PPAR, JAK-STAT, TNF, Toll-like receptor and NOD-like receptor signaling pathways. The active components in the volatile oil of S. oblata may play anti-inflammatory and anti-apoptosis roles. This study provides a reliable clue for further explanation of the effective components and the functioning mechanism of S. oblata in the treatment of angina pectoris.


Assuntos
Humanos , Angina Pectoris , Medicamentos de Ervas Chinesas/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Syringa
10.
Front Genet ; 12: 717871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567072

RESUMO

Polyploidy occurs naturally in fish; however, the appearance of these species is an occasional and gradual process, which makes it difficult to trace the changes in phenotypes, genotypes, and regulation of gene expression. The allotetraploid hybrids (4nAT) of red crucian carp (RCC; ♀) × common carp (CC; ♂) generated from interspecies crossing are a good model to investigate the initial changes after allopolyploidization. In the present study, we focused on the changes in the active sites of the testicular transcriptome of the allotetraploid by localization of RNA Pol II CTD YSPTSPS (phospho S5) using immunofluorescence and RNA-seq data via bioinformatic analysis. The results showed that there was no significant difference in signal counts of the RNA Pol II CTD (S5) between the different types of fish at the same stages, including RCC, CC, 2nF1, and 4nAT, which means that the number of transcriptionally active sites on germ cell chromosomes was not affected by the increase in chromosome number. Similarly, RNA-seq analysis indicated that in the levels of chromosomes and 10-kb regions in the genome, there were no significant changes in the highly active sites in RCC, 2nF1, and 4nAT. These findings suggest that at the beginning of tetraploid origin, the active transcriptome site of 4nAT in the testis was conserved in the regions of the genome compared to that in RCC and 2nF1. In conclusion, 4nAT shared a similar gene expression model in the regions of the genome with RCC and 2nF1 with significantly different expression levels.

11.
Sci China Life Sci ; 64(11): 1917-1928, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33893980

RESUMO

Meiosis is the key process for producing mature gametes. A natural fertile triploid Carassius auratus population (3nDTCC) and an artificially derived sterile triploid crucian carp (3nCC) have been previously observed, providing suitable model organisms for investigating meiosis characteristics in triploid fish. In the present study, the microstructures and ultrastructures of spermatogenesis were studied in these fishes. TdT-mediated dUTP nick end labeling detection was performed to investigate the apoptosis of spermatocytes. Fluorescence in situ hybridization was employed to trace chromatin pairing. In addition, the mRNA expressions of cell cycle-related genes (i.e., cell division control 2 and cell cycle protein B) were determined by quantitative realtime polymerase chain reaction to illustrate the molecular mechanism of abnormal meiosis in the 3nCC. The results showed that the 3nCC undergoes an irregular prophase I, with the chromosomes distributed in a unipolar radial manner and exhibiting partial pairing, hindered metaphase I, and degenerated cells in the subsequent stages. Meanwhile, the 3nDTCC presented a relatively regular meiotic prophase I with complete conjugate chromosome pairs and chromosomes distributed along the karyotheca, which were presented as a ring structure by slicing. Only the spreads with 130-150 irregular chromosomes can be easily detected in the 3nDTCC, suggesting that it may undergo an abnormal metaphase I. This study provides new insights into the meiosis of fertile and sterile triploid cyprinid fish.


Assuntos
Fertilidade/genética , Carpa Dourada/genética , Infertilidade/genética , Meiose/genética , Espermatogênese/genética , Triploidia , Animais , Apoptose/genética , Hibridização in Situ Fluorescente , Masculino
12.
J Dairy Sci ; 104(4): 4317-4325, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33551165

RESUMO

Yucca schidigera (YS) is a species of plant rich in antimicrobials, antioxidants, and immunomodulators. It has been used as feed additive to improve animal performance and decrease methane emissions in cattle. However, few studies have evaluated YS in dairy calves. In this study, we evaluated the effects of YS on the growth performance, antioxidant capacity, and immune function in dairy calves before weaning. We randomly assigned 40 newborn female Holstein calves (4 d old; 40 ± 5 kg of body weight) to 1 of 4 treatments (n = 10 per treatment), which were fed 0, 3, 6, or 9 g/d of YS powder. The YS allowance was mixed into milk or milk replacer and fed twice daily. Dry matter intake (both liquid and starter feed) and fecal score were recorded daily, and body weight, withers height, body length, and heart girth were measured at 4, 14, 28, 42, and 60 d of age. Blood was sampled from the jugular vein at 14, 42, and 60 d of age after the afternoon feeding for analysis of serum antioxidant capacity and immune function. Feeding YS did not affect dry matter intake, but decreased the feed-to-gain ratio with a quadratic dose effect. Over the whole study period, the average daily gain tended to linearly increase with the increasing YS doses, and it was 6.8% higher in diets supplemented with 9 g/d of YS than in the basal control diet without YS. The YS supplementation linearly decreased fecal score in a dose-dependent manner, and the frequency of diarrhea was significantly decreased as the YS supplementation increased throughout the whole study period. The YS supplementation also linearly decreased maleic dialdehyde concentration in the serum compared with the control group. The activity of catalase tended to linearly and quadratically increase, and that of glutathione peroxidase increased linearly with the increased YS supplementation. Serum concentrations of IgA and IgG increased linearly with the increased YS supplementation, and that of IgG tended to increase quadratically. To the best of our knowledge, this is the first study that demonstrated that feeding YS to young calves could improve growth, feed efficiency, and immunity, and decrease fecal score and diarrhea. The results of this study indicated that feeding YS at 9 g/d may be recommended to benefit dairy calves before weaning.


Assuntos
Antioxidantes , Yucca , Ração Animal/análise , Animais , Peso Corporal , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Imunidade , Desmame
13.
Shanghai Kou Qiang Yi Xue ; 27(3): 239-243, 2018 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-30411115

RESUMO

PURPOSE: The aim of this study was to determine the influence of fluoride-resistant strains of S. mutans on the bonding strength of dental resin composite. METHODS: Standardized specimens of resin composite (Z350), and self-etch adhesives (Single bond Universal, 3M) were incubated with S. mutans UA159, fluoride-resistant strains of S. mutans UA159 (UA159-FR) or uninoculated culture medium (Control) or PBS for up to 14 days. Resin-dentin bonded disks were subjected to push-out test. Fractured surface analysis of the specimens was performed by scanning electron microscopy(SEM). SPSS18.0 software package was used for statistical analysis. RESULTS: UA159-FR and UA159 were shown to decrease the bond strengths in levels comparable with those found in the control groups (P<0.05). SEM confirmed the increased degradation of all materials with UA159-FR and UA159, compared with control and PBS. CONCLUSIONS: The results suggest that resin-dentin interface can be compromised by oral bacteria that contribute to the progress of secondary caries. Fluoride-resistant strains of S. mutans and its parental strains both decrease bonding strengths in a short time, but no significant difference in the extent of damage.


Assuntos
Colagem Dentária , Adesivos Dentinários , Fluoretos , Streptococcus mutans , Resinas Compostas , Dentina , Fluoretos/farmacologia , Teste de Materiais , Cimentos de Resina , Streptococcus mutans/fisiologia , Propriedades de Superfície , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...