Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746146

RESUMO

Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral challenges. UBE3A is one of the most common ASD genes. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sex differences at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social interaction, repetitive self-grooming behavior, memory, and pain sensitivity, whereas female mice with UBE3A overexpression displayed greater olfactory defects. Social communication was impaired in both sexes, with males making more calls and females preferring complex syllables. At the molecular level, androgen receptor (AR) levels were reduced in both sexes due to enhanced degradation mediated by UBE3A. However, AR reduction significantly dysregulated AR target genes only in male, not female, UBE3A-overexpressing mice. Importantly, restoring AR levels in the brain effectively normalized the expression of AR target genes, and rescued the deficits in social preference, grooming behavior, and memory in male UBE3A-overexpressing mice, without affecting females. These findings suggest that AR and its signaling cascade play an essential role in mediating the sexually dimorphic changes in UBE3A-dependent ASD.

3.
Ageing Res Rev ; 97: 102307, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614368

RESUMO

Sleep is a highly intricate biological phenomenon, and its disorders play a pivotal role in numerous diseases. However, the specific regulatory mechanisms remain elusive. In recent years, the role of mitochondria in sleep disorders has gained considerable attention. Sleep deprivation not only impairs mitochondrial morphology but also decreases the number of mitochondria and triggers mitochondrial dysfunction. Furthermore, mitochondrial dysfunction has been implicated in the onset and progression of various sleep disorder-related neurological diseases, especially neurodegenerative conditions. Therefore, a greater understanding of the impact of sleep disorders on mitochondrial dysfunction may reveal new therapeutic targets for neurodegenerative diseases. In this review, we comprehensively summarize the recent key findings on the mechanisms underlying mitochondrial dysfunction caused by sleep disorders and their role in initiating or exacerbating common neurodegenerative diseases. In addition, we provide fresh insights into the diagnosis and treatment of sleep disorder-related diseases.

4.
Autophagy ; : 1-34, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38442890

RESUMO

Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.

5.
Stem Cell Res ; 77: 103397, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38547668

RESUMO

Somatostatin (SST)-producing pancreatic delta-cells play an important role in maintaining the balance of insulin and glucagon secretion within the islets. This study aimed to generate a human embryonic stem cell (hESC) line with a SST-P2A-mCherry reporter using CRISPR/Cas9 system. The SST-P2A-mCherry reporter cell line was shown to maintain typical pluripotent characteristics and able to be induced into SST-producing pancreatic delta-cells. The generation of the cell line would provide useful platform for the characterization of stem cell-derived delta-cells, discovery of delta-cell surface markers and investigation of paracrine mechanisms, which will ultimately promote the drug discovery and cell therapy of diabetes mellitus.

6.
Aging Dis ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38270115

RESUMO

Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by progressive degeneration of brain function. AD gradually affects the parts of the brain that control thoughts, language, behavior and mental function, severely impacting a person's ability to carry out daily activities and ultimately leading to death. The accumulation of extracellular amyloid-ß peptide (Aß) and the aggregation of intracellular hyperphosphorylated tau are the two key pathological hallmarks of AD. AD is a complex condition that involves both non-genetic risk factors (35%) and genetic risk factors (58-79%). The glymphatic system plays an essential role in clearing metabolic waste, transporting tissue fluid, and participating in the immune response. Both non-genetic and genetic risk factors affect the glymphatic system to varying degrees. The main purpose of this review is to summarize the underlying mechanisms involved in the deregulation of the glymphatic system during the progression of AD, especially concerning the diverse contributions of non-genetic and genetic risk factors. In the future, new targets and interventions that modulate these interrelated mechanisms will be beneficial for the prevention and treatment of AD.

7.
J Clin Invest ; 134(4)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175724

RESUMO

The mechanisms behind a lack of efficient fear extinction in some individuals are unclear. Here, by employing a principal components analysis-based approach, we differentiated the mice into extinction-resistant and susceptible groups. We determined that elevated synapsin 2a (Syn2a) in the infralimbic cortex (IL) to basolateral amygdala (BLA) circuit disrupted presynaptic orchestration, leading to an excitatory/inhibitory imbalance in the BLA region and causing extinction resistance. Overexpression or silencing of Syn2a levels in IL neurons replicated or alleviated behavioral, electrophysiological, and biochemical phenotypes in resistant mice. We further identified that the proline-rich domain H in the C-terminus of Syn2a was indispensable for the interaction with synaptogyrin-3 (Syngr3) and demonstrated that disrupting this interaction restored extinction impairments. Molecular docking revealed that ritonavir, an FDA-approved HIV drug, could disrupt Syn2a-Syngr3 binding and rescue fear extinction behavior in Syn2a-elevated mice. In summary, the aberrant elevation of Syn2a expression and its interaction with Syngr3 at the presynaptic site were crucial in fear extinction resistance, suggesting a potential therapeutic avenue for related disorders.


Assuntos
Medo , Córtex Pré-Frontal , Animais , Camundongos , Extinção Psicológica/fisiologia , Medo/fisiologia , Simulação de Acoplamento Molecular , Córtex Pré-Frontal/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinaptogirinas/metabolismo
8.
J Ethnopharmacol ; 321: 117569, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086513

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease among old adults. As a traditional Chinese medicine, the herbal decoction Tian-Si-Yin consists of Morinda officinalis How. and Cuscuta chinensis Lam., which has been widely used to nourish kidney. Interestingly, Tian-Si-Yin has also been used to treat dementia, depression and other neurological conditions. However, its therapeutic potential for neurodegenerative diseases such as AD and the underlying mechanisms remain unclear. AIM OF THE STUDY: To evaluate the therapeutic effect of the herbal formula Tian-Si-Yin against AD and to explore the underlying mechanisms. MATERIALS AND METHODS: The N2a cells treated with amyloid ß (Aß) peptide or overexpressing amyloid precursor protein (APP) were used to establish cellular models of AD. The in vivo anti-AD effects were evaluated by using Caenorhabditis elegans and 3 × Tg-AD mouse models. Tian-Si-Yin was orally administered to the mice for 8 weeks at a dose of 10, 15 or 20 mg/kg/day, respectively. Its protective role on memory deficits of mice was examined using the Morris water maze and fear conditioning tests. Network pharmacology, proteomic analysis and ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS) were used to explore the underlying molecular mechanisms, which were further investigated by Western blotting and immunohistochemistry. RESULTS: Tian-Si-Yin was shown to improve cell viability of Aß-treated N2a cells and APP-expressing N2a-APP cells. Tian-Si-Yin was also found to reduce ROS level and extend lifespan of transgenic AD-like C. elegans model. Oral administration of Tian-Si-Yin at medium dose was able to effectively rescue memory impairment in 3 × Tg mice. Tian-Si-Yin was further shown to suppress neuroinflammation by inhibition of glia cell activation and downregulation of inflammatory cytokines, diminishing tau phosphoralytion and Aß deposition in the mice. Using UHPLC-MS/MS and network pharmacology technologies, 17 phytochemicals from 68 components of Tian-Si-Yin were identified as potential anti-AD components. MAPK1, BRAF, TTR and Fyn were identified as anti-AD targets of Tian-Si-Yin from network pharmacology and mass spectrum. CONCLUSIONS: This study has established the protective effect of Tian-Si-Yin against AD and demonstrates that Tian-Si-Yin is capable of improving Aß level, tau pathology and synaptic disorder by regulating inflammatory response.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/tratamento farmacológico , Caenorhabditis elegans/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Camundongos Transgênicos , Aprendizagem em Labirinto , Precursor de Proteína beta-Amiloide/metabolismo , Transtornos da Memória/tratamento farmacológico , Modelos Animais de Doenças
9.
Protein Cell ; 15(4): 261-284, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38011644

RESUMO

Sporadic or late-onset Alzheimer's disease (LOAD) accounts for more than 95% of Alzheimer's disease (AD) cases without any family history. Although genome-wide association studies have identified associated risk genes and loci for LOAD, numerous studies suggest that many adverse environmental factors, such as social isolation, are associated with an increased risk of dementia. However, the underlying mechanisms of social isolation in AD progression remain elusive. In the current study, we found that 7 days of social isolation could trigger pattern separation impairments and presynaptic abnormalities of the mossy fibre-CA3 circuit in AD mice. We also revealed that social isolation disrupted histone acetylation and resulted in the downregulation of 2 dentate gyrus (DG)-enriched miRNAs, which simultaneously target reticulon 3 (RTN3), an endoplasmic reticulum protein that aggregates in presynaptic regions to disturb the formation of functional mossy fibre boutons (MFBs) by recruiting multiple mitochondrial and vesicle-related proteins. Interestingly, the aggregation of RTN3 also recruits the PP2A B subunits to suppress PP2A activity and induce tau hyperphosphorylation, which, in turn, further elevates RTN3 and forms a vicious cycle. Finally, using an artificial intelligence-assisted molecular docking approach, we determined that senktide, a selective agonist of neurokinin3 receptors (NK3R), could reduce the binding of RTN3 with its partners. Moreover, application of senktide in vivo effectively restored DG circuit disorders in socially isolated AD mice. Taken together, our findings not only demonstrate the epigenetic regulatory mechanism underlying mossy fibre synaptic disorders orchestrated by social isolation and tau pathology but also reveal a novel potential therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Fragmentos de Peptídeos , Substância P/análogos & derivados , Camundongos , Animais , Doença de Alzheimer/metabolismo , Inteligência Artificial , Estudo de Associação Genômica Ampla , Simulação de Acoplamento Molecular , Transtornos da Memória/metabolismo
10.
Sci Adv ; 9(16): eabq7105, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083538

RESUMO

The neuron-glia cross-talk is critical to brain homeostasis and is particularly affected by neurodegenerative diseases. How neurons manipulate the neuron-astrocyte interaction under pathological conditions, such as hyperphosphorylated tau, a pathological hallmark in Alzheimer's disease (AD), remains elusive. In this study, we identified excessively elevated neuronal expression of adenosine receptor 1 (Adora1 or A1R) in 3×Tg mice, MAPT P301L (rTg4510) mice, patients with AD, and patient-derived neurons. The up-regulation of A1R was found to be tau pathology dependent and posttranscriptionally regulated by Mef2c via miR-133a-3p. Rebuilding the miR-133a-3p/A1R signal effectively rescued synaptic and memory impairments in AD mice. Furthermore, neuronal A1R promoted the release of lipocalin 2 (Lcn2) and resulted in astrocyte activation. Last, silencing neuronal Lcn2 in AD mice ameliorated astrocyte activation and restored synaptic plasticity and learning/memory. Our findings reveal that the tau pathology remodels neuron-glial cross-talk and promotes neurodegenerative progression. Approaches targeting A1R and modulating this signaling pathway might be a potential therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Animais , Camundongos , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , MicroRNAs/metabolismo , Neurônios/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Humanos
11.
Mol Psychiatry ; 28(7): 2697-2706, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37037874

RESUMO

Astrocytes, an integral component of the central nervous system (CNS), contribute to the maintenance of physiological homeostasis through their roles in synaptic function, K+ buffering, blood-brain barrier (BBB) maintenance, and neuronal metabolism. Reactive astrocytes refer to astrocytes undergoing morphological, molecular and functional remodelling in response to pathological stimuli. The activation and differentiation of astrocytes are implicated in the pathogenesis of multiple neurodegenerative diseases. However, there are still controversies regarding their subset identification, function and nomenclature in neurodegeneration. In this review, we revisit the multidimensional roles of reactive astrocytes in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Furthermore, we propose a precise linkage between astrocyte subsets and their functions based on single-cell sequencing analyses.


Assuntos
Doença de Alzheimer , Doença de Huntington , Doenças Neurodegenerativas , Humanos , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/patologia
12.
Biomedicines ; 11(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36979836

RESUMO

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to morbidity and mortality, with several clinical manifestations, and has caused a widespread pandemic. It has been found that type 2 diabetes is a risk factor for severe coronavirus disease 2019 (COVID-19) illness. Moreover, accumulating evidence has shown that SARS-CoV-2 infection can increase the risk of hyperglycemia and diabetes, though the underlying mechanism remains unclear because of a lack of authentic disease models to recapitulate the abnormalities involved in the development, regeneration, and function of human pancreatic islets under SARS-CoV-2 infection. Stem-cell-derived islet organoids have been valued as a model to study islets' development and function, and thus provide a promising model for unraveling the mechanisms underlying the onset of diabetes under SARS-CoV-2 infection. This review summarized the latest results from clinical and basic research on SARS-CoV-2-induced pancreatic islet damage and impaired glycemic control. Furthermore, we discuss the potential and perspectives of using human ES/iPS cell-derived islet organoids to unravel the bidirectional relationship between glycemic control and SARS-CoV-2 infection.

13.
Mol Psychiatry ; 28(6): 2215-2227, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36918705

RESUMO

Neuronal death is one of the most common pathological hallmarks of diverse neurological diseases, which manifest varying degrees of cognitive or motor dysfunction. Neuronal death can be classified into multiple forms with complicated and unique regulatory signaling pathways. Tau is a key microtubule-associated protein that is predominantly expressed in neurons to stabilize microtubules under physiological conditions. In contrast, pathological tau always detaches from microtubules and is implicated in a series of neurological disorders that are characterized by irreversible neuronal death, such as necrosis, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-dependent neuronal death and phagocytosis by microglia. However, recent studies have also revealed that pathological tau can facilitate neuron escape from acute apoptosis, delay necroptosis through its action on granulovacuolar degeneration bodies (GVBs), and facilitate iron export from neurons to block ferroptosis. In this review, we briefly describe the current understanding of how pathological tau exerts dual effects on neuronal death by acting as a double-edged sword in different neurological diseases. We propose that elucidating the mechanism by which pathological tau affects neuronal death is critical for exploring novel and precise therapeutic strategies for neurological disorders.


Assuntos
Apoptose , Doenças do Sistema Nervoso , Humanos , Neurônios/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Microtúbulos/metabolismo , Proteínas tau/metabolismo
14.
Neuron ; 110(22): 3774-3788.e7, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36130594

RESUMO

Cholinergic neurons in the medial septum (MS) constitute a major source of cholinergic input to the forebrain and modulate diverse functions, including sensory processing, memory, and attention. Most studies to date have treated cholinergic neurons as a single population; as such, the organizational principles underling their functional diversity remain unknown. Here, we identified two subsets (D28K+ versus D28K-) of cholinergic neurons that are topographically segregated in mice, Macaca fascicularis, and humans. These cholinergic subpopulations possess unique electrophysiological signatures, express mutually exclusive marker genes (kcnh1 and aifm3 versus cacna1h and gga3), and make differential connections with physiologically distinct neuronal classes in the hippocampus to form two structurally defined and functionally distinct circuits. Gain- and loss-of-function studies on these circuits revealed their differential roles in modulation of anxiety-like behavior and spatial memory. These results provide a molecular and circuitry-based theory for how cholinergic neurons contribute to their diverse behavioral functions.


Assuntos
Colinérgicos , Neurônios Colinérgicos , Humanos , Camundongos , Animais , Neurônios Colinérgicos/fisiologia , Colinérgicos/farmacologia , Prosencéfalo , Hipocampo
15.
Transl Psychiatry ; 12(1): 352, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038535

RESUMO

Dysregulation of microRNAs (miRNAs) is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Hitherto, sample sizes from differential miRNA expression studies in AD are exceedingly small aggravating any biological inference. To overcome this limitation, we investigated six candidate miRNAs in a large collection of brain samples. Brain tissue was derived from superior temporal gyrus (STG) and entorhinal cortex (EC) from 99 AD patients and 91 controls. MiRNA expression was examined by qPCR (STG) or small RNA sequencing (EC). Brain region-dependent differential miRNA expression was investigated in a transgenic AD mouse model using qPCR and FISH. Total RNA sequencing was used to assess differential expression of miRNA target genes. MiR-129-5p, miR-132-5p, and miR-138-5p were significantly downregulated in AD vs. controls both in STG and EC, while miR-125b-5p and miR-501-3p showed no evidence for differential expression in this dataset. In addition, miR-195-5p was significantly upregulated in EC but not STG in AD patients. The brain region-specific pattern of miR-195-5p expression was corroborated in vivo in transgenic AD mice. Total RNA sequencing identified several novel and functionally interesting target genes of these miRNAs involved in synaptic transmission (GABRB1), the immune-system response (HCFC2) or AD-associated differential methylation (SLC16A3). Using two different methods (qPCR and small RNA-seq) in two separate brain regions in 190 individuals we more than doubled the available sample size for most miRNAs tested. Differential gene expression analyses confirm the likely involvement of miR-129-5p, miR-132-5p, miR-138-5p, and miR-195-5p in AD pathogenesis and highlight several novel potentially relevant target mRNAs.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/genética , Animais , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Análise de Sequência de RNA
16.
Mol Psychiatry ; 27(10): 4050-4063, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35840795

RESUMO

Aging is characterized with a progressive decline in many cognitive functions, including behavioral flexibility, an important ability to respond appropriately to changing environmental contingencies. However, the underlying mechanisms of impaired behavioral flexibility in aging are not clear. In this study, we reported that necroptosis-induced reduction of neuronal activity in the basolateral amygdala (BLA) plays an important role in behavioral inflexibility in 5-month-old mice of the senescence-accelerated mice prone-8 (SAMP8) line, a well-established model with age-related phenotypes. Application of Nec-1s, a specific inhibitor of necroptosis, reversed the impairment of behavioral flexibility in SAMP8 mice. We further observed that the loss of glycogen synthase kinase 3α (GSK-3α) was strongly correlated with necroptosis in the BLA of aged mice and the amygdala of aged cynomolgus monkeys (Macaca fascicularis). Moreover, genetic deletion or knockdown of GSK-3α led to the activation of necroptosis and impaired behavioral flexibility in wild-type mice, while the restoration of GSK-3α expression in the BLA arrested necroptosis and behavioral inflexibility in aged mice. We further observed that GSK-3α loss resulted in the activation of mTORC1 signaling to promote RIPK3-dependent necroptosis. Importantly, we discovered that social isolation, a prevalent phenomenon in aged people, facilitated necroptosis and behavioral inflexibility in 4-month-old SAMP8 mice. Overall, our study not only revealed the molecular mechanisms of the dysfunction of behavioral flexibility in aged people but also identified a critical lifestyle risk factor and a possible intervention strategy.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Camundongos , Animais , Necroptose , Envelhecimento , Neurônios , Isolamento Social
17.
Mol Psychiatry ; 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484244

RESUMO

Astrocytes constitute a major part of the central nervous system and the delineation of their activity patterns is conducive to a better understanding of brain network dynamics. This study aimed to develop a magnetic resonance imaging (MRI)-based method in order to monitor the brain-wide or region-specific astrocytes in live animals. Adeno-associated virus (AAVs) vectors carrying the human glial fibrillary acidic protein (GFAP) promoter driving the EGFP-AQP1 (Aquaporin-1, an MRI reporter) fusion gene were employed. The following steps were included: constructing recombinant AAV vectors for astrocyte-specific expression, detecting MRI reporters in cell culture, brain regions, or whole brain following cell transduction, stereotactic injection, or tail vein injection. The astrocytes were detected by both fluorescent imaging and Diffusion-weighted MRI. The novel AAV mutation (Site-directed mutagenesis of surface-exposed tyrosine (Y) residues on the AAV5 capsid) significantly increased fluorescence intensity (p < 0.01) compared with the AAV5 wild type. Transduction of the rAAV2/5 carrying AQP1 induced the titer-dependent changes in MRI contrast in cell cultures (p < 0.05) and caudate-putamen (CPu) in the brain (p < 0.05). Furthermore, the MRI revealed a good brain-wide alignment between AQP1 levels and ADC signals, which increased over time in most of the transduced brain regions. In addition, the rAAV2/PHP.eB serotype efficiently introduced AOP1 expression in the whole brain via tail vein injection. This study provides an MRI-based approach to detect dynamic changes in astrocytes in live animals. The novel in vivo tool could help us to understand the complexity of neuronal and glial networks in different pathophysiological conditions.

18.
Sci China Life Sci ; 65(8): 1590-1607, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35089530

RESUMO

The raphe nucleus is critical for feeding, rewarding and memory. However, how the heterogenous raphe neurons are molecularly and structurally organized to engage their divergent functions remains unknown. Here, we genetically target a subset of neurons expressing VGLUT3. VGLUT3 neurons control the efficacy of spatial memory retrieval by synapsing directly with parvalbumin-expressing GABA interneurons (PGIs) in the dentate gyrus. In a mouse model of Alzheimer's disease (AD mice), VGLUT3→PGIs synaptic transmission is impaired by ETV4 inhibition of VGLUT3 transcription. ETV4 binds to a promoter region of VGLUT3 and activates VGLUT3 transcription in VGLUT3 neurons. Strengthening VGLUT3→PGIs synaptic transmission by ETV4 activation of VGLUT3 transcription upscales the efficacy of spatial memory retrieval in AD mice. This study reports a novel circuit and molecular mechanism underlying the efficacy of spatial memory retrieval via ETV4 inhibition of VGLUT3 transcription and hence provides a promising target for therapeutic intervention of the disease progression.


Assuntos
Memória Espacial , Proteínas Vesiculares de Transporte de Glutamato , Animais , Camundongos , Neurônios/metabolismo , Núcleos da Rafe , Transmissão Sináptica , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
19.
Curr Neuropharmacol ; 20(2): 362-371, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34561985

RESUMO

The presence of foreign or misplaced nucleic acids is a dangerous signal that triggers innate immune responses by activating cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and binding to its downstream signaling effector stimulator of interferon genes (STING). Then the cGAS-STING pathway activation links nucleic acid-sensing to immune responses and pathogenic entities clearance. However, the overactivation of this signaling pathway leads to fatal immune disorders and contributes to the progression of many human inflammatory diseases. Therefore, optimal activation of this pathway is crucial for the elimination of invading pathogens and the maintenance of immune homeostasis. In this review, we will summarize its fundamental roles in initiating host defense against invading pathogens and discuss its pathogenic roles in multiple neuro-inflammatory diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and other neurodegenerative diseases.


Assuntos
Interferon Tipo I , Proteínas de Membrana , Doenças Neuroinflamatórias , Nucleotidiltransferases , DNA/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Doenças Neuroinflamatórias/imunologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
20.
Curr Neuropharmacol ; 20(1): 147-157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34525934

RESUMO

Oxytocin (OXT) is a nine amino acid neuropeptide hormone that has become one of the most intensively studied molecules in the past few decades. The vast majority of OXT is synthesized in the periventricular nucleus and supraoptic nucleus of the hypothalamus, and a few are synthesized in some peripheral organs (such as the uterus, ovaries, adrenal glands, thymus, pancreas, etc.) OXT modulates a series of physiological processes, including lactation, parturition, as well as some social behaviors. In addition, more and more attention has recently been focused on the analgesic effects of oxytocin. It has been reported that OXT can relieve tension and pain without other adverse effects. However, the critical role and detailed mechanism of OXT in analgesia remain unclear. This review aims to summarize the mechanism of OXT in analgesia and some ideas about the mechanism.


Assuntos
Analgesia , Ocitocina , Feminino , Humanos , Dor , Manejo da Dor , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...