Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(8): 2436-2444, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38498083

RESUMO

Paper-based electrochemical sensors have the characteristics of flexibility, biocompatibility, environmental protection, low cost, wide availability, and hydropathy, which make them very suitable for the development and application of biological detection. This work proposes electrospun cellulose acetate nanofiber (CA NF)-decorated paper-based screen-printed (PBSP) electrode electrochemical sensors. The CA NFs were directly collected on the PBSP electrode through an electrospinning technique at an optimized voltage of 16 kV for 10 min. The sensor was functionalized with different bio-sensitive materials for detecting different targets, and its sensing capability was evaluated by CV, DPV, and chronoamperometry methods. The test results demonstrated that the CA NFs enhanced the detection sensitivity of the PBSP electrode, and the sensor showed good stability, repeatability, and specificity (p < 0.01, N = 3). The electrochemical sensing of the CA NF-decorated PBSP electrode exhibited a short detection duration of ∼5-7 min and detection ranges of 1 nmol mL-1-100 µmol mL-1, 100 fg mL-1-10 µg mL-1, and 1.5 × 102-106 CFU mL-1 and limits of detection of 0.71 nmol mL-1, 89.1 fg mL-1, and 30 CFU mL-1 for glucose, Ag85B protein, and E. coli O157:H7, respectively. These CA NF-decorated PBSP sensors can be used as a general electrochemical tool to detect, for example, organic substances, proteins, and bacteria, which are expected to achieve point-of-care testing of pathogenic microorganisms and have wide application prospects in biomedicine, clinical diagnosis, environmental monitoring, and food safety.


Assuntos
Técnicas Biossensoriais , Celulose/análogos & derivados , Escherichia coli O157 , Nanofibras , Nanofibras/química , Celulose/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
2.
Front Neuroinform ; 16: 968907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081653

RESUMO

Rhythmic light flickers have emerged as useful tools to modulate cognition and rescue pathological oscillations related to neurological disorders by entrainment. However, a mechanistic understanding of the entrainment for different brain oscillatory states and light flicker parameters is lacking. To address this issue, we proposed a biophysical neural network model for thalamocortical oscillations (TCOs) and explored the stimulation effects depending on the thalamocortical oscillatory states and stimulation parameters (frequency, intensity, and duty cycle) using the proposed model and electrophysiology experiments. The proposed model generated alpha, beta, and gamma oscillatory states (with main oscillation frequences at 9, 25, and 35 Hz, respectively), which were successfully transmitted from the thalamus to the cortex. By applying light flicker stimulation, we found that the entrainment was state-dependent and it was more prone to induce entrainment if the flicker perturbation frequency was closer to the endogenous oscillatory frequency. In addition, endogenous oscillation would be accelerated, whereas low-frequency oscillatory power would be suppressed by gamma (30-50 Hz) flickers. Notably, the effects of intensity and duty cycle on entrainment were complex; a high intensity of light flicker did not mean high entrainment possibility, and duty cycles below 50% could induce entrainment easier than those above 50%. Further, we observed entrainment discontinuity during gamma flicker stimulations with different frequencies, attributable to the non-linear characteristics of the network oscillations. These results provide support for the experimental design and clinical applications of the modulation of TCOs by gamma (30-50 Hz) light flicker.

3.
Environ Sci Pollut Res Int ; 26(11): 11399-11409, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30805840

RESUMO

The Bi-SnO2/C electrocatalytic membrane was fabricated via a simple electrochemical reduction and hydrothermal method. Under the action of electric field, the Sn2+ and Bi3+ were firstly adsorbed and reduced to metallic Sn and Bi on the carbon membrane surface by cathodic reduction reaction, and the Bi-SnO2/C membrane was obtained subsequently through hydrothermal oxidation process. Confirmed by SEM, TEM, XRD, and XPS characterizations, the nano-Bi-SnO2 is homogeneously distributed on the membrane surface and is firmly attached to the carbon membrane via C-O-Sn chemical bond. Through CV, LSV, and EIS electrochemical analysis, the Bi-SnO2/C membrane possesses the higher electrocatalytic activity and stability than carbon membrane. Therefore, the Bi-SnO2/C membrane could continuously efficiently remove and inactivate Escherichia coli in water through flow-through mode. As a result, the sterilization efficiency can reach more than 99.99% under the conditions of cell voltage 4 V, flow rate 1.4 mL/min, and E. coli initial concentration 1.0 × 104 CFU/mL, owing to the synergistic effect of the membrane separation and electrocatalytic oxidation. Moreover, it was found that the oxidation groups of ⋅OH radicals generated by Bi-SnO2/C membrane play the crucial role for bactericidal performance. This work presents a low-cost, highly active, and stable electrocatalytic membrane towards continuous bacterial inactivation, which exhibits promising potential in water disinfection and is beneficial for practical large-scale applications.


Assuntos
Bismuto/química , Carbono/química , Técnicas Eletroquímicas/métodos , Escherichia coli/isolamento & purificação , Compostos de Estanho/química , Purificação da Água/métodos , Catálise , Técnicas Eletroquímicas/instrumentação , Eletrodos , Oxirredução , Microbiologia da Água/normas , Purificação da Água/instrumentação
4.
ACS Appl Mater Interfaces ; 10(42): 35888-35895, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30260211

RESUMO

It is a challenge to synthesize highly efficient nonprecious metal electrocatalysts with a well-defined nanostructure and rich active species. Herein, through electron engineering and structure manipulation simultaneously, we constructed Fe-embedded pyridinic-N-dominated carbon nanotubes (CNTs) on ordered mesoporous carbon, showing excellent oxygen reduction reaction activity (half-wave potential, 0.85 V) and an overpotential of 420 mV to achieve 10 mA cm-2 for oxygen evolution reaction in alkaline media (potential difference, 0.80 V). Density functional theory calculation indicates those Fe@N4 clusters improve charge transfer and further promote the electrocatalytic reactivity of the functionalized region in CNTs. Rechargeable Zn-air batteries were assembled, displaying robust charging-discharging cycling performance (over 90 h) with voltage gap of only 0.08 V, much lower than that of the Pt/C + Ir/C electrode (0.29 V). This work presents a highly active nonprecious metal-based bifunctional catalyst toward air electrode for energy conversion.

5.
J Hazard Mater ; 320: 495-503, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27591682

RESUMO

A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field.


Assuntos
Terra de Diatomáceas/química , Óxido de Magnésio/química , Nanoestruturas/química , Tetraciclina/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Filtração , Membranas Artificiais , Eletricidade Estática
6.
J Environ Sci (China) ; 44: 204-212, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27266317

RESUMO

To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater.


Assuntos
Corantes/química , Filtração/instrumentação , Triazenos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Cerâmica , Filtração/métodos , Resíduos Industriais , Membranas Artificiais , Porosidade , Eletricidade Estática , Propriedades de Superfície
7.
Materials (Basel) ; 9(5)2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28773486

RESUMO

In this work, an electrocatalytic membrane was prepared to degrade aqueous tetracycline (TC) using a carbon membrane coated with nano-TiO2 via a sol-gel process. SEM, XRD, EDS, and XPS were used to characterize the composition and structure of the electrocatalytic membrane. The effect of operating conditions on the removal rate of tetracycline was investigated systematically. The results show that the chemical oxygen demand (COD) removal rate increased with increasing residence time while it decreased with increasing the initial concentration of tetracycline. Moreover, pH had little effect on the removal of tetracycline, and the electrocatalytic membrane could effectively remove tetracycline with initial concentration of 50 mg·L-1 (pH, 3.8-9.6). The 100% tetracycline and 87.8% COD removal rate could be achieved under the following operating conditions: tetracycline concentration of 50 mg·L-1, current density of 1 mA·cm-2, temperature of 25 °C, and residence time of 4.4 min. This study provides a new and feasible method for removing antibiotics in water with the synergistic effect of electrocatalytic oxidation and membrane separation. It is evident that there will be a broad market for the application of electrocatalytic membrane in the field of antibiotic wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...