Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(3): 629-639, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38163997

RESUMO

The application of hydrogels in an underwater environment is limited due to their swelling behavior and the existence of a hydration layer. In this study, a hydrogel based on poly(sulfobetaine methacrylate) (PSBMA), tannic acid (TA) and montmorillonite (MMT) was prepared with excellent anti-swelling properties and underwater self-adhesion properties. The PSBMA hydrogel has excellent anti-swelling properties due to the strong electrostatic interaction between charged groups of PSBMA chains. Inspired by marine mussels, tannic acid modified montmorillonite (TA@MMT) was introduced. Natural polyphenol tannic acid, as a catechol donor, provides a large number of catechol groups for hydrogels. Montmorillonite acts as the physical cross-linking point of PSBMA chains through electrostatic interaction to improve the cohesion of the hydrogel. By combining the adhesion mechanism of zwitterions and catechol, the hydrogel maintains adhesion in air and underwater environments. In addition, a strain sensor was prepared based on the PSBMA/TA@MMT hydrogel, which can closely fit the human skin and stably monitor different movements in air and in underwater environments. Through a Bluetooth communication system, long-distance information transmission can be achieved. Therefore, the PSBMA/TA@MMT hydrogel broadens the application prospect of wearable devices in the underwater environment.

2.
Biosensors (Basel) ; 13(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37622849

RESUMO

Wound healing is a complex process composed of different stages, which involves extensive communication between the different cellular factors of the extracellular matrix (ECM). The radio frequency electromagnetic field (RF-EMF) has been used to accelerate the wound-healing process and it has been found to enhance cell alignment and mobility. The conventional methods for cell mobility analysis in an electromagnetic field generated by a radiation source are not advisable due to the low-precision, nonuniform distribution of the field, low efficiency of the analysis in batch and the lack of system integration for autonomous on-body operation. Here, a novel and versatile electromagnetic exposure system integrated with a microfluidic chip was fabricated to explore the EMF-induced response. A gradient electromagnetic field in a two-dimensional plane has been successfully established in the microchambers placed along the field line. In this work, by deploying our radiation experiments in vitro, we validated the on-chip monitoring of cell response to exposure. This electromagnetic field was simulated and human amniotic epithelial cells (HAECs) were cultured in different microchambers for continuous exposure to the electromagnetic field excited by a monopole RF antenna (1.8 GHz). New protrusions were generated and an obvious increase in filopodia with the increased field intensity was investigated. Meanwhile, the variation in intracellular Ca2+ concentration under the electromagnetic field was examined. The inhibitory effect of the Ca2+ circulation was further inspected to reveal the potential downstream signaling pathway in the RF-EMF-related bioassay, suggesting that cytoskeletal dynamics of cells under exposure are highly associated with the EGF receptor (EGFR)-cytoskeleton downstream signaling pathway. Finally, the field-induced cell elongation and alignment parallel to the field direction were observed. Additionally, the subsequent recovery (field withdrawal) and re-establishment (field re-exposure) were explored. These results indicated that this reliable and versatile exposure system for bioassay could achieve precise and high-throughput detection of the RF-EMF-induced cytoskeletal reorganization in vitro and evaluate the possible health risk from RF-EMF exposure.


Assuntos
Campos Eletromagnéticos , Projetos de Pesquisa , Humanos , Bioensaio , Movimento Celular , Dispositivos Lab-On-A-Chip
3.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049879

RESUMO

An NMR method based on the gradient-based broadening fingerprint using line shape enhancement (PROFILE) is put forward to precisely and sensitively study hydrogel swelling under restricted conditions. This approach achieves a match between the resonance frequency and spatial position of the sample. A three-component hydrogel with salt ions was designed and synthesized to show the monitoring more clearly. The relationship between the hydrogel swelling and the frequency signal is revealed through the one-dimensional imaging. This method enables real-time monitoring and avoids changing the swelling environment of the hydrogel during contact. The accuracy of this method may reach the micron order. This finding provides an approach to the rapid and non-destructive detection of swelling, especially one-dimensional swelling, and may show the material exchange between the hydrogel and swelling medium.

4.
J Healthc Eng ; 2021: 7608785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630995

RESUMO

In order to improve the effective extraction of fetal heart rate and prevent fetal distress in utero, a study of fetal heart rate feature extraction based on wavelet transform to prevent fetal distress in utero was proposed. This paper adopts a fetal heart rate detection method based on the maximum value of the binary wavelet transform modulus. The method is simulated by the Doppler fetal heart signal obtained from the clinic. Compared with the original curve, the transformed curve can roughly see the change rule of the original signal and identify the peak point of the signal, but due to the large disturbance of the peak point, the influence on the computer processing is also great. The periodicity of the transformed signal is greatly enhanced, making it easier to deal with the computation. A total of 300 pregnant women with full-term fetal heart monitoring from January 2018 to January 2020 were selected as the research subjects and divided into the observation group and the control group. The observation group consisted of 100 patients with abnormal fetal heart monitoring, and the control group consisted of 200 patients with normal fetal heart monitoring. The uterine contractions and fetal heart rate were recorded, and the incidence of fetal distress, cesarean section, neonatal asphyxia, and amniotic fluid and fecal contamination were observed. The incidence of fetal distress, cesarean section, neonatal asphyxia, and amniotic fluid fecal stain in the observation group were significantly higher than those in the control group. Fetal heart monitoring can accurately judge the situation of the fetus in pregnant women and timely diagnose the abnormal fetal heart rate, which has a better effect on the prognosis of perinatal infants and can reduce their mortality. It can effectively solve the problems existing in the autocorrelation algorithm and extract the fetal heart rate more accurately. It is an effective improved scheme of fetal heart rate extraction. It is very helpful in preventing fetal distress in utero.


Assuntos
Sofrimento Fetal , Frequência Cardíaca Fetal , Cesárea , Feminino , Sofrimento Fetal/diagnóstico , Sofrimento Fetal/prevenção & controle , Humanos , Lactente , Recém-Nascido , Gravidez , Ultrassonografia Doppler , Análise de Ondaletas
5.
ACS Appl Mater Interfaces ; 12(1): 1210-1221, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31845573

RESUMO

In this work, a simple phosphating process was proposed to modify cellulose-acetate (CA) and lignin for a novel energy storage precursor material. The prepared precursor fibers exhibited good thermal stability of lignin and flexibility of CA. Subsequently, the precursor fibers undergo a short preoxidation and carbonization treatment process to obtain the biomass-based carbon fibers (CFs) with complete fibrous morphology, uniform fiber diameter, high surface areas, good flexibility, and excellent power storage capacity. The specific capacitance of 346.6 F/g was obtained by using CFs-5 (prepared with 40% H3PO4 content) as a supercapacitor. Simultaneously, the biomass-based CF supercapacitor device delivers a high-energy density of 31.5 Wh/kg at the power density of 400 W/kg. These results indicate that the introduction of H3PO4 can effectively reduce the energy consumption of the preoxidation treatment process for the preparation of the biomass-based CFs, while increasing the energy storage properties significantly. This novel strategy showed a successful route for the preparation of high-quality and low-consumption biomass-based CFs.


Assuntos
Carbono/química , Celulose/química , Lignina/química , Nanofibras/química , Capacitância Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...