Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 37(5): 1847-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26584284

RESUMO

BACKGROUND/AIMS: microRNAs (miRNAs) are noncoding RNAs that regulate multiple targets through either the degradation of mRNAs or the inhibition of protein translation, thereby altering several functions simultaneously. Growing evidence indicates that miRNAs are involved in carcinogenesis and tumor progression in non-small-cell lung cancer (NSCLC). METHODS: In this study, the mRNA expression levels of miR-148a were examined in NSCLC cell lines and patient specimens using quantitative reverse transcription-PCR. The functions of miR-148a in migration/invasion and lung metastasis formation were determined by using transwell and tail vein injection assays, respectively. RESULTS: We demonstrated that miR-148a was down-regulated in NSCLC metastatic samples, and its expression was suppressed in NSCLC compared with the corresponding nonmalignant lung tissues. Clinical analysis indicated that miR-148a expression was lower in NSCLC patients compared with nonmalignant lung tissues . Decreased miR-148a was significantly associated with tumor node metastasis stage and lymph node metastasis. Furthermore, functional assays showed that miR-148a expression suppressed NSCLC cell invasive and migratory abilities in vitro and suppressed cancer metastasis in vivo, while inhibition of miR-148a enhanced NSCLC cell invasion and lung metastasis formation in a mouse model. CONCLUSIONS: Evidence from this study demonstrated that miR-148a exerts tumor-suppressive effects in NSCLC and suggests a new therapeutic option for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Idoso , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Feminino , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metástase Linfática , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Pessoa de Meia-Idade , Oligonucleotídeos Antissenso/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
2.
Int J Oncol ; 47(3): 927-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26134302

RESUMO

Lung cancer is the leading cause of malignancy-related death worldwide, and metastasis always results in a poor prognosis. However, therapeutic progress is hampered by a deficiency of appropriate pre-clinical metastatic models. To bridge this experimental gap, we developed an in vivo metastatic model via subcutaneous (s.c.) injection. The original cell line (XL-2) adopted in this model was newly isolated from the ascites of a patient with extensive metastases of lung adenocarcinoma, thereby avoiding any alteration of its initial molecular biology features from artificial serial cultivation. After comprehensive phenotypical and histological analysis, it was identified as a lung adenocarcinoma cell line. Additionally, the drug test showed that XL-2 cell line was sensitive to docetaxel, and resistant to doxorubicin, indicating it might serve as a cell line model of drug resistance for identifying mechanisms of tumors resistant to doxorubicin. Through this s.c. model, we further obtained a highly metastatic cell line (designated XL-2sci). The metastatic rate of mice in XL-2 group was 3/10, in contrast to the rate of 9/10 in XL-2sci group. Optical imaging, micro-computed tomography (micro-CT) scanning and Transwell assays were further applied to identify the enhanced metastatic capacity of Xl-2sci cells both in vivo and in vitro. Compared with XL-2 cells, ITRAQ labeled proteomics profiling study showed that some tumor metastasis-associated proteins were upregulated in XL-2sci cells, which also indicated the reliability of our model. Proliferation ability of XL-2 and XL-2sci were also evaluated. Results showed that highly metastatic XL-2sci possessed a decreased proliferation capacity versus XL-2, which demonstrated that its increased metastatic activity was not facilitated by a faster growth rate. In conclusion, we successfully developed an in vivo metastatic model using a newly established lung adenocarcinoma cell line, which will be beneficial to further investigations of lung cancer metastasis and to the development of anti-metastasis drugs.


Assuntos
Adenocarcinoma/patologia , Adenocarcinoma/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Animais , Proliferação de Células , Docetaxel , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/secundário , Proteômica , Taxoides/farmacologia , Células Tumorais Cultivadas
3.
Oncotarget ; 5(21): 10621-35, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25301737

RESUMO

CD133 is a cellular surface glycoprotein that has been reported as a marker for the enrichment of cancer stem cells (CSCs). However, the regulatory mechanism of CD133 remains unknown. CSCs have been proposed to contribute to radioresistance and multi-drug resistance. The elucidation of key regulators of CD133 and CSCs is critical for the development of CSC-targeted therapy. In this study, we showed that Ikarosinhibited the expression of CD133 via direct binding to the CD133 P1 promoter and repressed the tumorigenic and self-renewal capacity of CD133(+) cancer stem-like cells in hepatocellular carcinoma (HCC). We found that Ikaros interacted with CtBP as a transcription repressor complex, which inhibited CD133 expression in HCC. We also demonstrated that Ikaros expression was up-regulated by ETS1 which activity was regulated by MAPKs pathway. Furthermore, decreased expression of Ikaroswas significantly associated with poor survival in HCC patients. Overall, our study identifies that Ikaros plays a role as a transcription repressor in HCC and is a new reactivated therapeutic target for the treatment of HCC. Meanwhile, our findings provide evidence that Ikaros could be an attractive inhibitor of the target gene CD133, which reactivates anticancer mechanisms in targeted CSC therapy.


Assuntos
Antígenos CD/metabolismo , Carcinoma Hepatocelular/metabolismo , Glicoproteínas/metabolismo , Fator de Transcrição Ikaros/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Peptídeos/metabolismo , Antígeno AC133 , Animais , Antígenos CD/genética , Apoptose , Western Blotting , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Diferenciação Celular , Proliferação de Células , Imunoprecipitação da Cromatina , Feminino , Citometria de Fluxo , Imunofluorescência , Glicoproteínas/genética , Humanos , Fator de Transcrição Ikaros/genética , Técnicas Imunoenzimáticas , Imunoprecipitação , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/patologia , Peptídeos/genética , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...