Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; : 116219, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643907

RESUMO

The pivotal roles of ATP-binding cassette (ABC) transporters in drug resistance have been widely appreciated. Here we report that marein, a natural product from Coreopsis tinctoria Nutt, is a potent chemo-sensitizer in drug resistant cancer cells overexpressing ABCG2 transporter. We demonstrate that marein can competitively inhibit efflux activity of ABCG2 protein and increase the intracellular accumulation of the chemotherapeutic drugs that belong to substrate of this transporter. We further show that marein can bind to the conserved amino acid residue F439 of ABCG2, a critical site for drug-substrate interaction. Moreover, marein can significantly sensitize the ABCG2-expressing tumor cells to chemotherapeutic drugs such as topotecan, mitoxantrone, and olaparib. This study reveals a novel role and mechanism of marein in modulating drug resistance, and may have important implications in treatment of cancers that are resistant to chemotherapeutic drugs that belong to the substrates of ABCG2 transporters.

2.
Environ Sci Pollut Res Int ; 31(20): 29232-29245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573573

RESUMO

Tire-road wear particles (TRWPs) are formed by friction between the tire and the road. TRWPs are ubiquitous across the globe, especially in sediments. However, the possible effects of TRWPs on tetracycline (TC) in aquatic sediments are unknown. To investigate the potential role of TRWPs as carriers of co-pollutants, this study investigated the pore surface properties and TC adsorption behavior of TRWP-contaminated sediments and explored the TC behavior in water sediments, as well as the role of aging processes and TRWPs abundance. The results showed that the surface morphology of TRWP-contaminated sediments changed and the adsorption capacity of sediments to TC increased. The TC adsorption capacity of sediments contaminated by 2% TRWPs increased from 3.15 to 3.48 mg/g. Moreover, the surface physical and chemical properties of TRWPs after UV aging changed, which further increased the TC adsorption capacity. The TC adsorption capacity of the sediments contaminated by aged TRWPs increased from 3.48 to 3.65 mg/g. Changing the proportion of aged TRWPs, we found that the adsorption capacity of sediments contaminated by different proportions of TRWPs for TC was 2% > 1% > 0.5% > 4% > blank sediment. These results may contribute to predicting the potential environmental risks of TRWPs in aquatic sediments.


Assuntos
Sedimentos Geológicos , Tetraciclina , Poluentes Químicos da Água , Adsorção , Tetraciclina/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/química
3.
Free Radic Biol Med ; 181: 29-42, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101564

RESUMO

Diabetic cardiomyopathy lacks effective and novel methods. Hydrogen sulfide (H2S) as the third gasotransmitter plays an important role in the cardiovascular system. Our study was to elucidate the protective effect and possible mechanism of H2S on diabetic cardiomyopathy from the perspective of necroptosis. Leptin receptor deficiency (db/db) mice and streptozotocin (STZ)-induced diabetic cystathionine-γ-lyase (CSE) knockout (KO) mice were investigated. In addition, cardiomyocytes were stimulated with high glucose. We found that plasma H2S level, myocardial H2S production and CSE mRNA expression was impaired in the diabetic mice. CSE deficiency exacerbated diabetic cardiomyopathy, and promoted myocardial oxidative stress, necroptosis and inflammasome in STZ-induced mice. CSE inhibitor dl-propargylglycine (PAG) aggravated cell damage and oxidative stress, deteriorated necroptosis and inflammasome in cardiomyocytes with high glucose stimulation. H2S donor sodium hydrosulfide (NaHS) improved diabetic cardiomyopathy, attenuated myocardial oxidative stress, necroptosis and the NLR family pyrin domain-containing protein 3 (NLRP3) in db/db mice. NaHS also alleviated cell damage, oxidative stress, necroptosis and inflammasome in cardiomyocytes with high glucose stimulation. In Conclusion, H2S deficiency aggravated mitochondrial damage, increased reactive oxygen species accumulation, promoted necroptosis, activated NLRP3 inflammasome, and finally exacerbated diabetic cardiomyopathy. Exogenous H2S supplementation alleviated necroptosis to suppress NLRP3 inflammasome activation and attenuate diabetic cardiomyopathy via mitochondrial dysfunction improvement and oxidative stress inhibition. Our study provides the first evidence and a new mechanism that necroptosis inhibition by a pharmacological manner of H2S administration protected against diabetic cardiomyopathy. It is beneficial to provide a novel strategy for the prevention and treatment of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Sulfeto de Hidrogênio , Animais , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/prevenção & controle , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Camundongos , Necroptose
4.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769322

RESUMO

Myocardial ischemia or hypoxia can induce myocardial fibroblast proliferation and myocardial fibrosis. Hydrogen sulfide (H2S) is a gasotransmitter with multiple physiological functions. In our present study, primary cardiac fibroblasts were incubated with H2S donor sodium hydrosulfide (NaHS, 50 µM) for 4 h followed by hypoxia stimulation (containing 5% CO2 and 1% O2) for 4 h. Then, the preventive effects on cardiac fibroblast proliferation and the possible mechanisms were investigated. Our results showed that NaHS reduced the cardiac fibroblast number, decreased the hydroxyproline content; inhibited the EdU positive ratio; and down-regulated the expressions of α-smooth muscle actin (α-SMA), the antigen identified by monoclonal antibody Ki67 (Ki67), proliferating cell nuclear antigen (PCNA), collagen I, and collagen III, suggesting that hypoxia-induced cardiac fibroblasts proliferation was suppressed by NaHS. NaHS improved the mitochondrial membrane potential and attenuated oxidative stress, and inhibited dynamin-related protein 1 (DRP1), but enhanced optic atrophy protein 1 (OPA1) expression. NaHS down-regulated receptor interacting protein kinase 1 (RIPK1) and RIPK3 expression, suggesting that necroptosis was alleviated. NaHS increased the sirtuin 3 (SIRT3) expressions in hypoxia-induced cardiac fibroblasts. Moreover, after SIRT3 siRNA transfection, the inhibitory effects on cardiac fibroblast proliferation, oxidative stress, and necroptosis were weakened. In summary, necroptosis inhibition by exogenous H2S alleviated hypoxia-induced cardiac fibroblast proliferation via SIRT3.


Assuntos
Fibroblastos/efeitos dos fármacos , Fibrose/tratamento farmacológico , Coração/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Hipóxia/fisiopatologia , Necroptose , Sirtuínas/metabolismo , Animais , Animais Recém-Nascidos , Proliferação de Células , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/metabolismo , Fibrose/patologia , Gasotransmissores/farmacologia , Coração/fisiopatologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Sirtuínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...