Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nature ; 626(7999): 523-528, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356068

RESUMO

Spatial, momentum and energy separation of electronic spins in condensed-matter systems guides the development of new devices in which spin-polarized current is generated and manipulated1-3. Recent attention on a set of previously overlooked symmetry operations in magnetic materials4 leads to the emergence of a new type of spin splitting, enabling giant and momentum-dependent spin polarization of energy bands on selected antiferromagnets5-10. Despite the ever-growing theoretical predictions, the direct spectroscopic proof of such spin splitting is still lacking. Here we provide solid spectroscopic and computational evidence for the existence of such materials. In the noncoplanar antiferromagnet manganese ditelluride (MnTe2), the in-plane components of spin are found to be antisymmetric about the high-symmetry planes of the Brillouin zone, comprising a plaid-like spin texture in the antiferromagnetic (AFM) ground state. Such an unconventional spin pattern, further found to diminish at the high-temperature paramagnetic state, originates from the intrinsic AFM order instead of spin-orbit coupling (SOC). Our finding demonstrates a new type of quadratic spin texture induced by time-reversal breaking, placing AFM spintronics on a firm basis and paving the way for studying exotic quantum phenomena in related materials.

2.
Nutr Cancer ; 76(3): 279-295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38226887

RESUMO

This study aims to build a prognostic model based on lactic acid metabolism-related genes (LMRGs) to predict survival outcomes and tumor microenvironment status of Hepatocellular carcinoma (HCC) patients. The model was used to calculate riskscores of clinical samples. Survival analysis and Cox regression analysis were conducted to verify the independence and reliability of the riskscore to determine its clinical significance in prognosis evaluation of HCC. Additionally, we conducted a comprehensive analysis of tumor mutation burden (TMB), immune cell infiltration, and gene set molecular function in the high- and low-risk groups. We obtained 134 LMRGs mainly involved in cellular calcium homeostasis and calcium signaling pathways. The LMRGs in the risk assessment model included PFKFB4, SLC16A3, ADRA2B, SLC22A1, QRFPR, and PROK1. This study discovered much shorter overall survival and median survival time of patients with higher riskscores when compared to those with lower riskscores. It was indicated that for independent prediction of patients' prognosis, the riskscore had a significant clinical value. A remarkable difference was also found regarding TMB between the two groups. Finally, cell experiments demonstrated that the knockout of PFKFB4 and SLC16A3 genes suppressed lactate. Our research demonstrated that the riskscore, established based on LMRGs, is a promising biomarker.


Assuntos
Carcinoma Hepatocelular , Hormônios Gastrointestinais , Neoplasias Hepáticas , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina , Humanos , Ácido Láctico , Carcinoma Hepatocelular/genética , Microambiente Tumoral/genética , Reprodutibilidade dos Testes , Neoplasias Hepáticas/genética , Prognóstico , Receptores Acoplados a Proteínas G , Fosfofrutoquinase-2
3.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076982

RESUMO

Robustness is the reproducible development of a phenotype despite stochastic noise. It often involves tradeoffs with other performance metrics, but the mechanisms underlying such tradeoffs were largely unknown. An Arabidopsis flower robustly develops four sepals from four precisely positioned auxin maxima. The development related myb-like 1 (drmy1) mutant generates stochastic noise in auxin signaling that disrupts both the robust position and number of sepal primordia. Here, we found that increased expression of CUP-SHAPED COTYLEDON1 (CUC1), a boundary specification transcription factor, in the drmy1 mutant underlies this loss of robustness. CUC1 surrounds and amplifies stochastic auxin patches in drmy1 to form variably positioned auxin maxima and sepal primordia. Removing CUC1 from drmy1 provides time for the noise in auxin signaling to resolve into four precisely positioned auxin maxima, restoring robust sepal initiation. However, removing CUC1 decreases auxin maxima intensity and slows down sepal initiation. Thus, CUC1 increases morphogenesis speed but impairs robustness against auxin noise. Further, using a computational model, we found that the observed phenotype can be explained by the effect of CUC1 in repolarizing PIN FORMED1 (PIN1), a polar auxin transporter. Thus, our study illustrates a tradeoff between speed and robustness during development.

4.
Nanotechnology ; 35(3)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37827144

RESUMO

Ag-N-C catalyst was synthesized by the calcination process with AgNO3as precursors, active carbon as support, and melamine as an N source. Series of characterizations showed that Ag was transferred into AgCl during the active phase by HCl, and pyridinic structure in the support was bonded with Ag components. Then, Ag-N-C single atom catalyst (SAC) was obtained by washing Ag-N-C with acid, aberration-correction high-angle-annular-dark-field scanning transmission electron microscopy showed that Ag presented in single atoms form, and Ag coordinated with the nitrogen atom in the support. Ag loss rate for Ag-N-C SAC was only 0.09% after running 10 h in acetylene hydrochlorination process, which was much smaller than Ag-N-C (57%), indicating that the presence of the Ag-N bond could be inhibiting Ag species loss.

5.
Curr Ther Res Clin Exp ; 98: 100700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123033

RESUMO

Background: Antisense transcript of the B-cell translocation gene 3 (ASBEL) is a highly conserved antisense non-coding RNA (ncRNA) and participates in a variety of biological processes. However, the ASBEL expression status in pancreatic ductal adenocarcinoma (PDAC) and its correlation with BTG3 expression and tumor cell progression were not completely clear. Objective: We conducted cell experiments and animal experiments to confirm that ASBEL plays a crucial role in the tumorigenesis of PDAC by targeting BTG3. Methods: ASBEL regulation in PDAC tumorigenesis was evaluated using Western blotting, quantitative polymerase chain reaction, Cell Counting Kit-8 assay, flow cytometry, and cell transfection. We also evaluated the expression of ASBEL and BTG3 in tumor tissues and cells using Western blotting and quantitative real-time polymerase chain reaction. Finally, we explored the role of ASBEL in tumor development by silencing or overexpressing ASBEL gene in AsPC-1 or CFPAC-1 cells, respectively, and evaluated the antitumor activity in vivo using an ASBEL antagonist. Results: Our study revealed the expression of ASBEL in all pancreatic cell lines. The expression level of ASBEL in tumor tissues was found to be higher than that of paracarcinomatous tissues. ASBEL suppresses expression of BTG3, enhances proliferation and suppresses apoptosis, and promotes migration and invasion in pancreatic cancer cell. Antagonist regulates the expression of ASBEL in AsPC-1, and suppresses tumor growth in xenograft mouse model. Conclusions: Our results indicate that ASBEL may play a tumor-promoting factor in PDAC by targeting BTG3 and could be as an important biomarker for PDAC treatment. (Curr Ther Res Clin Exp. 2023; 84:XXX-XXX).

6.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066395

RESUMO

Robustness is the invariant development of phenotype despite environmental changes and genetic perturbations. In the Arabidopsis flower bud, four sepals initiate at robust positions and times and grow to equal size to enclose and protect the inner floral organs. We previously characterized the mutant development related myb-like1 (drmy1), where 3-5 sepals initiate at irregular positions and variable times and grow to different sizes, compromising their protective function. The molecular mechanism underlying this loss of robustness was unclear. Here, we show that drmy1 has reduced TARGET OF RAPAMYCIN (TOR) activity, ribosomal content, and translation. Translation reduction decreases the protein level of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7), a rapidly synthesized and degraded cytokinin signaling inhibitor. The resultant upregulation of cytokinin signaling disrupts the robust positioning of auxin signaling, causing variable sepal initiation. Our work shows that the homeostasis of translation, a ubiquitous cellular process, is crucial for the robust spatiotemporal patterning of organogenesis.

7.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770621

RESUMO

The poor stability of carbon materials doped with nitrogen limited their development in acetylene hydrochlorination. Therefore, investigating the deactivation reasons of carbon catalysts and researching regeneration methods became the research focus. Herein, carbon-nitrogen materials were synthesized by one-step pyrolysis, which using biomass materials with high nitrogen content, the synthesized material was used in an acetylene hydrochlorination reaction. The acetylene conversion rate of D-GH-800 catalyst was up to 99%, but the catalytic activity decreased by 30% after 60 h reaction. Thermogravimetric analysis results showed that the coke content was 5.87%, resulting in catalyst deactivation. Temperature-programmed desorption verified that the deactivation was due to the strong adsorption and difficult desorption of acetylene by the D-GH-800 catalyst, resulting in the accumulation of acetylene on the catalyst surface to form carbon polymers and leading to the pore blockage phenomenon. Furthermore, based on the catalyst deactivation by carbon accumulation, we proposed a new idea of regeneration by ZnCl2 activation to eliminate carbon deposition in the pores of the deactivated catalyst. As a result, the activity of D-GH-800 was recovered, and lifetime was also extended. Our strategy illustrated the mechanism of carbon deposition, and the recoverability of the catalyst has promising applications.

8.
Curr Biol ; 33(3): R114-R117, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36750024

RESUMO

Xerobranching, a temporary suppression of root branching when water is limiting, is controlled by the plant hormone abscisic acid (ABA). A recently published study reveals how root branching is dynamically controlled by redistribution in opposite directions of ABA and auxin.


Assuntos
Secas , Raízes de Plantas , Reguladores de Crescimento de Plantas , Ácido Abscísico , Fenômenos Fisiológicos Vegetais , Hormônios , Regulação da Expressão Gênica de Plantas
9.
Nanoscale ; 15(3): 1422-1430, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36594603

RESUMO

Chemoselective hydrogenation of quinoline and its derivatives under mild reaction conditions still remains a challenging topic, which requires a suitable interaction between reactants and a catalyst to achieve high performance and stability. Herein, FePO4-supported Rh single atoms, subnano clusters and nanoparticle catalysts were synthesized and evaluated in the chemoselective hydrogenation of quinoline. The results show that the Rh subnano cluster catalyst with a size of ∼1 nm gives a specific reaction rate of 353 molquinoline molRh-1 h-1 and a selectivity of >99% for 1,2,3,4-tetrahydroquinoline under mild conditions of 50 °C and 5 bar H2, presenting better performance compared with the Rh single atoms and nanoparticle counterparts. Moreover, the Rh subnano cluster catalyst exhibits good stability and substrate universality for the hydrogenation of various functionalized quinolines. A series of characterization studies demonstrate that the acidic properties of the FePO4 support favors the adsorption of quinoline while the Rh subnano clusters promote the dissociation of H2 molecules, and then contribute to the enhanced hydrogenation performance. This work provides an important implication to design efficient Rh-based catalysts for chemoselective hydrogenation under mild conditions.

10.
Am J Transl Res ; 15(12): 6779-6785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186982

RESUMO

OBJECTIVE: To elucidate the effect of aspirin (ASP) on the biological behavior of gallbladder carcinoma (GBC) cells and its influence on vascular endothelial growth factor (VEGF) expression. METHODS: Cell Counting Kit-8 (CCK-8) assay was performed to determine the effects of ASP on GBC-SD cell proliferation. In addition, Transwell assay and flow cytometry were carried out to observe the role of ASP in GBC-SD cell migration, invasion and apoptosis, respectively. Tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), and VEGF concentrations in GBC-SD cells were examined by enzyme-linked immunosorbent assays (ELISAs). RESULTS: ASP suppressed GBC-SD cell proliferation in a dose-dependent manner, and a concentration ≥ 2 mmol/L could significantly inhibit the migration and invasion of GBC-SD cells and induce apoptosis. In addition, the anticancer effect of ASP in GBC-SD cells may be linked to its inhibition of TNF-α, NF-κB, and VEGF levels. CONCLUSIONS: ASP may markedly inhibit GBC-SD cell growth by significantly reducing TNF-α, NF-κB and VEGF expression.

11.
Front Plant Sci ; 13: 978304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247603

RESUMO

Improving crop salt tolerance is an adaptive measure to climate change for meeting future food demands. Previous studies have reported that glycine betaine (GB) plays critical roles as an osmolyte in enhancing plant salt resistance. However, the mechanism underlying the GB regulating plant Na+ homeostasis during response to salinity is poorly understood. In this study, hydroponically cultured maize with 125 mM NaCl for inducing salinity stress was treated with 100 µM GB. We found that treatment with GB improved the growth of maize plants under non-stressed (NS) and salinity-stressed (SS) conditions. Treatment with GB significantly maintained the properties of chlorophyll fluorescence, including Fv/Fm, ΦPSII, and ΦNPQ, and increased the activity of the antioxidant enzymes for mitigating salt-induced growth inhibition. Moreover, GB decreased the Na+/K+ ratio primarily by reducing the accumulation of Na+ in plants. The results of NMT tests further confirmed that GB increased Na+ efflux from roots under SS condition, and fluorescence imaging of cellular Na+ suggested that GB reduced the cellular allocation of Na+. GB additionally increased Na+ efflux in leaf protoplasts under SS condition, and treatment with sodium orthovanadate, a plasma membrane (PM) H+-ATPase inhibitor, significantly alleviated the positive effects of GB on Na+ efflux under salt stress. GB significantly improved the vacuolar activity of NHX but had no significant effects on the activity of V type H+-ATPases. In addition, GB significantly upregulated the expression of the PM H+-ATPase genes, ZmMHA2 and ZmMHA4, and the Na+/H+ antiporter gene, ZmNHX1. While, the V type H+-ATPases gene, ZmVP1, was not significantly regulated by GB. Altogether these results indicate that GB regulates cellular Na+ homeostasis by enhancing PM H+-ATPases gene transcription and protein activities to improve maize salt tolerance. This study provided an extended understanding of the functions of GB in plant responses to salinity, which can help the development of supportive measures using GB for obtaining high maize yield in saline conditions.

12.
World J Clin Cases ; 10(27): 9790-9797, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36186218

RESUMO

BACKGROUND: Synchronous primary cancers (SPCs) have become increasingly frequent over the past decade. However, the coexistence of duodenal papillary and gallbladder cancers is rare, and such cases have not been previously reported in the English literature. Here, we describe an SPC case with duodenal papilla and gallbladder cancers and its diagnosis and successful management. CASE SUMMARY: A 68-year-old Chinese man was admitted to our hospital with the chief complaint of dyspepsia for the past month. Contrast-enhanced computed tomography of the abdomen performed at the local hospital revealed dilatation of the bile and pancreatic ducts and a space-occupying lesion in the duodenal papilla. Endoscopy revealed a tumor protruding from the duodenal papilla. Pathological findings for the biopsied tissue revealed tubular villous growth with moderate heterogeneous hyperplasia. Surgical treatment was selected. Macroscopic examination of this surgical specimen revealed a 2-cm papillary tumor and another tumor protruding by 0.5 cm in the gallbladder neck duct. Intraoperative rapid pathology identified adenocarcinoma in the gallbladder neck duct and tubular villous adenoma with high-grade intraepithelial neoplasia and local canceration in the duodenal papilla. After an uneventful postoperative recovery, the patient was discharged without complications. CONCLUSION: It is essential for clinicians and pathologists to maintain a high degree of suspicion while evaluating such synchronous cancers.

13.
Medicine (Baltimore) ; 101(39): e29483, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36181038

RESUMO

BACKGROUND: Despite the usefulness of traditional Chinese medicine (TCM) in the treatment of lower deep vein thrombosis (DVT), there is no consensus on safety and efficacy. We aim to systematically evaluate the safety and efficacy of TCM combined with Rivaroxaban in the treatment of lower limb DVT. METHODS: An online search of databases such as Cochrane Library, Embase, Pubmed, and Web of science, as well as CBM, China Science and Technology Journal Database, China Knowledge Network (CNKI) and Wanfang Data (from inception to July, 2021) was performed. All published clinical randomized controlled trials (RCTs) were screened manually, evaluated for quality and considered for meta-analysis using RevMan 5.3. RESULTS: Nine RCTs with a total of 730 cases were included, 368 cases in the trial group were treated with TCM combined with Rivaroxaban, and 362 cases in the control group were treated with Rivaroxaban alone after surgery. Clinical efficiency was significantly higher in the test group [OR = 3.33, 95% CI (2.01, 5.53), P < .00001], the circumference of the affected limb was significantly lower in the thigh and calf, respectively [MD = -1.48, 95% CI (-1.88, -1.09), P < .00001], [MD = -0.54, 95% CI (-0.62, -0.46), P < .00001], pain scores were significantly lower [MD = -0.97, 95% CI (-1.58, -0.36), P = .002], coagulation index plasma fibrinogen (FIB) was significantly lower [MD = -0.85, 95% CI (-1.18, -0.52), P < .00001], coagulation function index D-2 aggregates were significantly reduced [MD = -0.69, 95% CI (-1.13, -0.24), P = .002], serum hypersensitive C-reactive protein (hs-CRP) measurements were significantly reduced [MD = -5.37, 95% CI (-9.20, -1.55), P = .006], complications measurement was significantly lower [OR = 0.60, 95% CI (0.27, 1.30), P = .20], activated partial thrombin time (ATPP) measurement was significantly lower [MD = 5.70, 95% CI (4.28, 7.12), P < .00001] and prothrombin time (PT) measurement was significantly lower [MD = 1.64, 95% CI (0.70, 2.57), P = .0006]. CONCLUSION: Based on the available evidence, TCM combined with Rivaroxaban for treating lower extremity DVT have better clinical efficacy and safety profile, reducing the risk of bleeding complications and adverse effects. Further improved studies are needed to support this inference.


Assuntos
Medicamentos de Ervas Chinesas , Trombose Venosa , Proteína C-Reativa , Medicamentos de Ervas Chinesas/uso terapêutico , Fibrinogênio , Humanos , Extremidade Inferior , Medicina Tradicional Chinesa , Rivaroxabana/uso terapêutico , Trombose Venosa/tratamento farmacológico
14.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080205

RESUMO

In this study, using the application of density functional theory, the mechanism of graphene-NiNx (x = 1, 2, 3, 4) series non-noble metal catalysts in acetylene hydrogenation was examined under the B3LYP/6-31G** approach. With the DFT-D3 density functional dispersion correction, the effective core pseudopotential basis set of LANL2DZ was applied to metallic Ni atoms. The reaction energy barriers of NiNx catalysts are different from the co-adsorption structure during the catalytic hydrogenation of graphene-NiNx (x = 1, 2, 3, 4). The calculated results showed that the energy barrier and selectivity of graphene-NiN4 for ethylene production were 25.24 kcal/mol and 26.35 kcal/mol, respectively. The low energy barrier and high activity characteristics showed excellent catalytic performance of the catalyst. Therefore, graphene-NiN4 provides an idea for the direction of catalytic hydrogenation.

15.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077397

RESUMO

In this paper, density functional theory (DFT) was used to study the possibility of low-dimensional (2D, 1D, 0D) boron nitride nanomaterials to catalyze acetylene acetate reaction, and further explore the possible source of this catalytic activity. It is found that the catalytic activity of boron nitride nanomaterials for acetylene acetate reaction will change with the change of the geometric structure (dimension) and reaction site of the catalyst. From the geometric structure, the reaction components and the zero-dimensional BN catalyst can form chemical bonds and form complexes, while only physical adsorption occurs on the surface of the one-dimensional and two-dimensional BN catalysts. From the reaction site, the properties of different C sites on the B12N12NC-C2H2 complexes are different. Namely, a C atom connected with a B atom is more likely to have an electrophilic reaction with H+, and a C atom connected with an N atom is more likely to have a nucleophilic reaction with CH3COO-. Through the study of three kinds of BN nanomaterials with low dimensions, we found that the zero-dimensional B12N12 nanocage broke the inherent reaction inertia of BN materials and showed good catalytic activity in an acetylene acetate reaction, which is very likely to be a non-metallic catalyst for the acetylene gas-phase preparation of vinyl acetate.


Assuntos
Acetileno , Nanoestruturas , Acetatos , Acetileno/química , Compostos de Boro , Teoria da Densidade Funcional , Nanoestruturas/química
16.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35957049

RESUMO

We report the influence of sp2 content in carbon catalyst on the catalytic activity for acetylene hydrochlorination. Nanodiamonds (NDs) were used as the precursor and calcinated under different temperatures. The resulting ND500, ND700, ND900, and ND1100 catalysts were characterized, and the sp2 content increased with increasing calcination temperature. The specific activities of the catalysts first increased and then decreased with increasing sp2 content. The highest catalytic activity could be obtained in the ND-900 catalyst with a sp2 value of 43.9%. The density functional theory results showed that the adsorption sites for acetylene and hydrogen chloride were located at the interface between sp2 and sp3 configuration.

17.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35285482

RESUMO

Understanding the development of tissues, organs and entire organisms through the lens of single-cell genomics has revolutionized developmental biology. Although single-cell transcriptomics has been pioneered in animal systems, from an experimental perspective, plant development holds some distinct advantages: cells do not migrate in relation to one another, and new organ formation (of leaves, roots, flowers, etc.) continues post-embryonically from persistent stem cell populations known as meristems. For a time, plant studies lagged behind animal or cell culture-based, single-cell approaches, largely owing to the difficulty in dissociating plant cells from their rigid cell walls. Recent intensive development of single-cell and single-nucleus isolation techniques across plant species has opened up a wide range of experimental approaches. This has produced a rapidly expanding diversity of information across tissue types and species, concomitant with the creative development of methods. In this brief Spotlight, we highlight some of the technical developments and how they have led to profiling single-cell genomics in various plant organs. We also emphasize the contribution of single-cell genomics in revealing developmental trajectories among different cell types within plant organs. Furthermore, we present efforts toward comparative analysis of tissues and organs at a single-cell level. Single-cell genomics is beginning to generate comprehensive information relating to how plant organs emerge from stem cell populations.


Assuntos
Desenvolvimento Vegetal , Plantas , Animais , Flores , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Meristema/genética , Raízes de Plantas
18.
World J Surg Oncol ; 19(1): 300, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34654443

RESUMO

BACKGROUND: Tumor-infiltrating lymphocytes (TILs) are major participants in the tumor microenvironment. The prognostic value of TILs in patients with pancreatic cancer is still controversial. METHODS: The aim of our meta-analysis was to determine the impact of FoxP3+Treg cells on the survival of pancreatic cancer patients. We searched for related studies in PubMed, EMBASE, Ovid, and Cochrane Library from the time the databases were established to Mar 30, 2017. We identified studies reporting the prognostic value of FoxP3+Treg cells in patients with pancreatic cancer. Overall survival (OS) and disease-free survival (DFS)/progression-free survival (PFS)/relapse-free survival (RFS) were investigated by pooling the data. The pooled hazard ratios (HRs) with 95% confidence intervals (95% CI) were used to evaluate the association between FoxP3+Treg cells and survival outcomes of pancreatic cancer patients. A total of 972 pancreatic cancer patients from 8 studies were included in our meta-analysis. RESULTS: High levels of infiltration with FoxP3+Treg cells were significantly associated with poor OS (HR=2.13; 95% CI 1.64-2.77; P<0.05) and poor DFS/PFS/RFS (HR=1.70; 95% CI 1.04 ~ 2.78; P< 0.05). Similar results were also observed in the peritumoral tissue; high levels of FoxP3+Treg cells were associated with poor OS (HR =2.1795% CI, CI 1.50-3.13). CONCLUSION: This meta-analysis indicated that high levels of intratumoral or peritumoral FoxP3+Treg cell infiltration could be recognized as a negative factor in the prognosis of pancreatic cancer.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Fatores de Transcrição Forkhead , Humanos , Linfócitos do Interstício Tumoral , Recidiva Local de Neoplasia , Prognóstico , Linfócitos T Reguladores , Microambiente Tumoral
19.
Nanomaterials (Basel) ; 11(9)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34578685

RESUMO

A hierarchical porous carbon material (HPC) with an ultra-high specific surface area was synthesized with sisal fiber (SF) as a precursor, and then H3PW12O40·24H2O (HPW) was immobilized on the support of SF-HPC by a simple impregnation method. A series characterization technology approved that the obtained SF-HPC had a high surface area of 3152.46 m2g-1 with micropores and macropores. HPW was well-dispersed on the surface of the SF-HPC support, which reduced the loading of HPW to as low as 5%. HPW/SF-HPW showed excellent catalytic performance for oxidative desulfurization, and the desulfurization rate reached almost 100% under the optimal reaction conditions. The desulfurization rate of HPW/SF-HPW could be maintained at above 94% after four recycles.

20.
Nanomaterials (Basel) ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947082

RESUMO

In this study, a series of activated carbon-based supports with different oxygen-containing groups (OCGs) proportions were obtained via thermal treatment in an ozone flow. Semiquantitative analyses indicated that the performance of the catalyst attained a maximum after 30 min of treatment with ozone flow, and had a positive correlation with the content ratios of carboxyl and hydroxyl groups. Further, temperature-programmed desorption analysis demonstrated that the high performance (63% acetic acid conversion) of the prepared catalyst for the acetoxylation of acetylene could be ascribed to the reduced strength of increased capacity of acetylene adsorption. Density functional theory proved that the additional -COOH in the dicarboxylic catalytic system could be employed as a support for the active sites, and enhancing C2H2 adsorption strength in the rate-limiting step in the actual experimental process effectively accelerated the reaction rate. Thus, the OCGs on the surface of activated carbon play a crucial role in the catalytic performance of the acetylene acetoxylation catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...