Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(3): 1301-1309, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38373043

RESUMO

Continuous pulse wave detection can be used for monitoring and diagnosing cardiovascular diseases, and research on pulse sensing based on piezoelectric thin films is one of the hot spots. Usually, piezoelectric thin films do not come into direct contact with the skin and need to be connected through a layer of an elastic medium. Most views think that the main function of this layer of elastic medium is to increase the adhesion between the sensor component and the skin, but there is little discussion about the impact of the elastic medium on pulse vibration transmission. Here, we conducted a detailed study on the effects of Young's modulus and the thickness of elastic media on pulse sensing signals. The results show that the waveform amplitude of the piezoelectric sensing signal decreases with the increase of Young's modulus and thickness of the elastic medium. Then, we constructed a theoretical model of the influence of elastic media on pulse wave propagation. The amplitude of the pulse wave signal detected by the optimized sensor was increased to 480%. Our research shows that by regulating Young's modulus and thickness of elastic media, pulse wave signals can undergo a similar amplification effect, which has an important theoretical reference value for achieving ambulatory blood pressure monitoring based on high-quality pulse waves.


Assuntos
Monitorização Ambulatorial da Pressão Arterial , Elastômeros , Razão Sinal-Ruído , Módulo de Elasticidade , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...