Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 179: 61-82, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579919

RESUMO

In the field of tissue engineering, local hypoxia in large-cell structures (larger than 1 mm3) poses a significant challenge. Oxygen-releasing biomaterials supply an innovative solution through oxygen ⁠ delivery in a sustained and controlled manner. Compared to traditional methods such as emulsion, sonication, and agitation, microfluidic technology offers distinct benefits for oxygen-releasing material production, including controllability, flexibility, and applicability. It holds enormous potential in the production of smart oxygen-releasing materials. This review comprehensively covers the fabrication and application of microfluidic-enabled oxygen-releasing biomaterials. To begin with, the physical mechanism of various microfluidic technologies and their differences in oxygen carrier preparation are explained. Then, the distinctions among diverse oxygen-releasing components in regards for oxygen-releasing mechanism, oxygen-carrying capacity, and duration of oxygen release are presented. Finally, the present obstacles and anticipated development trends are examined together with the application outcomes of oxygen-releasing biomaterials based on microfluidic technology in the biomedical area. STATEMENT OF SIGNIFICANCE: Oxygen is essential for sustaining life, and hypoxia (a condition of low oxygen) is a significant challenge in various diseases. Microfluidic-based oxygen-releasing biomaterials offer precise control and outstanding performance, providing unique advantages over traditional approaches for tissue engineering. However, comprehensive reviews on this topic are currently lacking. In this review, we provide a comprehensive analysis of various microfluidic technologies and their applications for developing oxygen-releasing biomaterials. We compare the characteristics of organic and inorganic oxygen-releasing biomaterials and highlight the latest advancements in microfluidic-enabled oxygen-releasing biomaterials for tissue engineering, wound healing, and drug delivery. This review may hold the potential to make a significant contribution to the field, with a profound impact on the scientific community.


Assuntos
Materiais Biocompatíveis , Oxigênio , Engenharia Tecidual , Oxigênio/química , Humanos , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Animais , Microfluídica/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38577727

RESUMO

BACKGROUND: The cerebellum is a key structure involved in balance and motor control, and has become a new stimulation target in brain regulation technology. Interference theta-burst simulation (iTBS) is a novel simulation mode of repetitive transcranial magnetic simulation. However, the impact of cerebellar iTBS on balance function and gait in stroke patients is still unknown. AIM: The aim of this study was to determine whether cerebellar iTBS can improve function, particularly balance and gait, in patients with post-stroke hemiplegia. DESIGN: This study is a randomized, double-blind, sham controlled clinical trial. SETTING: The study was carried out at the Department of Rehabilitation Medicine in a general hospital. POPULATION: Patients with stroke with first unilateral lesions were enrolled in the study. METHODS: Thirty-six patients were randomly assigned to the cerebellar iTBS group or sham stimulation group. The cerebellar iTBS or pseudo stimulation site is the ipsilateral cerebellum on the paralyzed side, which is completed just before daily physical therapy. The study was conducted five times a week for two consecutive weeks. All patients were assessed before the intervention (T0) and at the end of 2 weeks of treatment (T1), respectively. The primary outcome was the Berg Balance Scale (BBS), while secondary outcome measures included the Fugl Meyer Lower Limb Assessment Scale (FMA-LE), timed up and go (TUG), Barthel Index (BI), and gait analysis. RESULTS: After 2 weeks of intervention, the BBS, FMA-LE, TUG, and BI score in both the iTBS group and the sham group were significantly improved compared to the baseline (all P<0.05). Also, there was a significant gait parameter improvement including the cadence, stride length, velocity, step length compared to the baseline (P<0.05) in the iTBS group, but only significant improvement in cadence was identified in the sham group (P<0.05). Intergroup comparison showed that the BBS (P<0.001), FMA-LE (P<0.001), and BI (P=0.002) in the iTBS group were significantly higher than those in the sham group, and the TUG in the iTBS was significantly lower than that in the sham group (P=0.002). In addition, there were significant differences in cadence (P=0.029), strip length (P=0.046), gain velocity (P=0.002), and step length of affected lower limb (P=0.024) between the iTBS group and the sham iTBS group. CONCLUSIONS: Physical therapy is able to improve the functional recovery in hemiplegic patients after stroke, but the cerebellar iTBS can facilitate and accelerate the recovery, particularly the balance function and gait. Cerebellar iTBS could be an efficient and facilitative treatment for patients with stroke. CLINICAL REHABILITATION IMPACT: Cerebellar iTBS provides a convenient and efficient treatment modality for functional recovery of patients with stroke, especially balance function and gait.

3.
Innovation (Camb) ; 5(1): 100549, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38192379

RESUMO

Tightly integrating actuation, computation, and sensing in soft materials allows soft robots to respond autonomously to their environments. However, fusing these capabilities within a single soft module in an efficient, programmable, and compatible way is still a significant challenge. Here, we introduce a strategy for integrating actuation, computation, and sensing capabilities in soft origami. Unified and plug-and-play soft origami modules can be reconfigured into diverse morphologies with specific functions or reprogrammed into a variety of soft logic circuits, similar to LEGO bricks. We built an untethered autonomous soft turtle that is able to sense stimuli, store data, process information, and perform swimming movements. The function multiplexing and signal compatibility of the origami minimize the number of soft devices, thereby reducing the complexity and redundancy of soft robots. Moreover, this origami also exhibits strong damage resistance and high durability. We envision that this work will offer an effective way to readily create on-demand soft robots that can operate in unknown environments.

4.
Adv Mater ; 36(7): e2304840, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37722080

RESUMO

Microfluidics, with its remarkable capacity to manipulate fluids and droplets at the microscale, has emerged as a powerful platform in numerous fields. In contrast to conventional closed microchannel microfluidic systems, free-boundary microfluidic manufacturing (FBMM) processes continuous precursor fluids into jets or droplets in a relatively spacious environment. FBMM is highly regarded for its superior flexibility, stability, economy, usability, and versatility in the manufacturing of advanced materials and architectures. In this review, a comprehensive overview of recent advancements in FBMM is provided, encompassing technical principles, advanced material manufacturing, and their applications. FBMM is categorized based on the foundational mechanisms, primarily comprising hydrodynamics, interface effects, acoustics, and electrohydrodynamic. The processes and mechanisms of fluid manipulation are thoroughly discussed. Additionally, the manufacturing of advanced materials in various dimensions ranging from zero-dimensional to three-dimensional, as well as their diverse applications in material science, biomedical engineering, and engineering are presented. Finally, current progress is summarized and future challenges are prospected. Overall, this review highlights the significant potential of FBMM as a powerful tool for advanced materials manufacturing and its wide-ranging applications.

5.
Front Aging Neurosci ; 15: 1320240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152605

RESUMO

Background: Hydrotherapy can improve the motor and non-motor symptoms of Parkinson's disease (PD), but the long-term effects of hydrotherapy on PD are still unclear. Objective: The purpose of this systematic evaluation and meta-analysis was to explore the long-term effects of hydrotherapy on balance function in PD patients. Methods: A systematic search of five databases was conducted to identify appropriate randomized controlled trials (RCTs) according to the established inclusion and exclusion criteria. The general characteristics and outcome data (balance, exercise, mobility, quality of life, etc.) of the included studies were extracted, and the quality of the included studies was evaluated using the Cochrane risk of bias assessment tool. Finally, the outcome data were integrated for meta-analysis. Results: A total of 149 articles were screened, and 5 high-quality RCTs involving 135 PD patients were included. The results of the meta-analysis showed positive long-term effects of hydrotherapy on balance function compared to the control group (SMD = 0.69; 95% CI = 0.21, 1.17; p = 0.005; I2 = 44%), However, there were no significant long-term effects of hydrotherapy on motor function (SMD = 0.06; 95% CI = -0.33, 0.44; p = 0.77; I2 = 0%), mobility and quality of life (SMD = -0.21; 95% CI = -0.98, 0.57; p = 0.6; I2 = 71%). Interestingly, the results of the sensitivity analysis performed on mobility showed a clear continuation effect of hydrotherapy on mobility compared to the control group (SMD = -0.80; 95% CI = -1.23, -0.37; p < 0.001; I2 = 0%). Conclusion: The long-term effects of hydrotherapy on PD patients mainly focus on balance function, and the continuous effects on motor function, mobility, and quality of life are not obvious.

6.
Nat Commun ; 14(1): 6430, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833280

RESUMO

Soft fluidic robots have attracted a lot of attention and have broad application prospects. However, poor fluidic power source and easy to damage have been hindering their development, while the lack of intelligent self-protection also brings inconvenience to their applications. Here, we design diversified self-protection soft fluidic robots that integrate soft electrohydrodynamic pumps, actuators, healing electrofluids, and E-skins. We develop high-performance soft electrohydrodynamic pumps, enabling high-speed actuation and large deformation of untethered soft fluidic robots. A healing electrofluid that can form a self-healed film with excellent stretchability and strong adhesion is synthesized, which can achieve rapid and large-areas-damage self-healing of soft materials. We propose multi-functional E-skins to endow robots intelligence, making robots realize a series of self-protection behaviors. Moreover, our robots allow their functionality to be enhanced by the combination of electrodes or actuators. This design strategy enables soft fluidic robots to achieve their high-speed actuation and intelligent self-protection, opening a door for soft robots with physical intelligence.

7.
Nat Commun ; 14(1): 5386, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666839

RESUMO

Droplet rebound is ubiquitous on super-repellent surfaces. Conversion between kinetic and surface energies suggests that rebound suppression is unachievable due to negligible energy dissipation. Here, we present an effective approach to suppressing rebounds by incorporating bubbles into droplets, even in super-repellent states. This suppression arises from the counteractive capillary effects within bubble-encapsulated hollow droplets. The capillary flows induced by the deformed inner-bubble surface counterbalance those driven by the outer-droplet surface, resulting in a reduction of the effective take-off momentum. We propose a double-spring system with reduced effective elasticity for hollow droplets, wherein the competing springs offer distinct behavior from the classical single-spring model employed for single-phase droplets. Through experimental, analytical, and numerical validations, we establish a comprehensive and unified understanding of droplet rebound, by which the behavior of single-phase droplets represents the exceptional case of zero bubble volume and can be encompassed within this overarching framework.

8.
Micromachines (Basel) ; 14(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985100

RESUMO

Microfluidics is a rapidly growing field of research that involves the manipulation and analysis of fluids in small-scale channels, usually with dimensions ranging from sub-micrometer to sub-millimeter [...].

9.
Front Aging Neurosci ; 15: 1096417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819715

RESUMO

Background: At present, the effect of Tai Chi (TC) on lower limb function in patients with Parkinson's disease (PD) is controversial. Therefore, we conducted a meta-analysis on the influence of TC on lower limb function in PD patients. Methods: According to the PRISMA guidelines, seven databases were searched. Randomized controlled trials (RCTS) were selected and screened according to inclusion and exclusion criteria. We assessed the quality of the studies using the Cochrane Risk of Bias tool and then extracted the characteristics of the included studies. The random effect model was adopted, and heterogeneity was measured by I 2 statistic. Results: A total of 441 articles were screened, and 10 high-quality RCTs were with a total of 532 patients with PD met Our inclusion criteria. Meta-analysis showed that compared To control groups TC improved several outcomes. TC significantly improved motor function (SMD = -0.70; 95% CI = -0.95, -0.45; p < 0.001; I 2 = 35%), although The results were not statistically significant for The subgroup analysis of TC duration (SMD = -0.70; 95% CI = -0.95, -0.45; p = 0.88; I 2 = 0%;). TC significantly improved balance function (SMD = 0.89; 95% CI = 0.51, 1.27; p < 0.001; I 2 = 54%), functional walking capacity (SMD = -1.24; 95% CI = -2.40, -0.09; p = 0.04; I 2 = 95%), and gait velocity (SMD = 0.48; 95% CI = -0.02, 0.94; p = 0.04; I 2 = 78%), But Did Not improve endurance (SMD = 0.31; 95% CI = -0.12, 0.75; p = 0.16; I 2 = 0%), step length (SMD = 0.01; 95% CI = -0.34, 0.37; p = 0.94; I 2 = 29%), and cadence (SMD = 0.06; 95% CI = -0.25, 0.36; p = 0.70; I 2 = 0%). Conclusion: TC has beneficial effects on motor function, balance function, functional walking ability, and gait velocity, but does not improve walking endurance, stride length, and cadence.

10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(1): 89-95, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36765482

RESUMO

OBJECTIVE: To investigate the effects of lncRNA HOTAIR on the proliferation, invasion and migration of lymphoma cells through target gene miR-20a-5p and its molecular mechanism. METHODS: After synthesizing HOTAIR siRNA and siRNA NC plasmids, they were transfected into lymphoma Raji cells, respectively. The expression of HOTAIR mRNA was detected by RT-qPCR. The proliferation, invasion and migration of lymphoma Raji cells were detected by CCK-8 assay, Transwell assay and cell scratch healing assay, respectively. The target gene of lncRNA HOTAIR was predicted by miRcode software, and the relationship between HOTAIR and target gene was analyzed by dual luciferase assay. After synthesis of miR-20a-5p inhibitor and inhibitor NC, Raji cells were transiently transfected. The expression of miR-20a-5p was detected by RT-qPCR, and the effects of down-regulation of miR-20a-5p on the proliferation, invasion and migration of Raji cells were analyzed. The overexpression plasmid of lncRNA HOTAIR and miR-20a-5p mimics were transfected into Raji cells simultaneously to analyze the proliferation, invasion and migration ability of Raji cells. After overexpression or down-regulation of miR-20a-5p, the expression of JAK/STAT3 signaling pathway related proteins was analyzed. RESULTS: HOTAIR expression in Raji cells was decreased after transfection of HOTAIR siRNA (P<0.01), and miR-20a-5p expression was also decreased after transfection of miR-20a-5p inhibitor (P<0.01). HOTAIR had a targeting and negative regulation relationship with miR-20a-5p (r=-0.826). Silencing HOTAIR promoted the expression of miR-20a-5p and inhibited the proliferation, invasion and migration of Raji cells. Down-regulation of miR-20a-5p expression promoted the proliferation, invasion and migration of Raji cells. Effect of HOTAIR overexpression on the proliferation, invasion and migration of Raji cells could be reversed by up-regulation of miR-20a-5p. Down-regulation of miR-20a-5p expression activated the intracellular JAK/STAT3 signaling pathway. CONCLUSION: HOTAIR affects the proliferation, invasion and migration of lymphoma cells by targeting miR-20a-5p, and its mechanism may be related to the activation of JAK/STAT3 signaling pathway.


Assuntos
Linfoma , MicroRNAs , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Interferente Pequeno
11.
Arch Phys Med Rehabil ; 104(1): 151-159, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35636518

RESUMO

OBJECTIVE: The purpose of this review was to systematically assess the effectiveness of 10-Hz repetitive transcranial magnetic stimulation (rTMS) in fibromyalgia. DATA SOURCES: We searched PubMed, Cochrane Library, Embase, Web of Science, and Ovid databases as of November 6, 2021. STUDY SELECTION: The inclusion criteria for this review were randomized controlled trials of 10-Hz rTMS for fibromyalgia, exploring the effects of 10-Hz rTMS on pain, depression, and quality of life in patients with fibromyalgia. DATA EXTRACTION: Data extraction was performed independently by 2 evaluators according to predefined criteria, and the quality of the included literature was assessed using the Cochrane Bias Risk Assessment Tool. The measurement outcomes include visual analog scale, Hamilton Depression Rating Scale, and Fibromyalgia Impact Questionnaire, and so on. DATA SYNTHESIS: A total of 488 articles were screened, and the final 7 selected high-quality articles with 217 patients met our inclusion criteria. Analysis of the results showed that high-frequency transcranial magnetic stimulation at 10 Hz was significantly associated with reduced pain compared with sham stimulation in controls (standardized mean difference [SMD]=-0.72; 95% confidence interval [CI], -1.12 to -0.33; P<.001; I2=46%) and was able to improve quality of life (SMD=-0.70; 95% CI, -1.00 to -0.40; P<.001; I2=15%) but not improve depression (SMD=-0.23; 95% CI, -0.50 to 0.05; P=.11; I2=33%). In addition, a subgroup analysis of pain conducted based on stimulation at the primary motor cortex and dorsolateral prefrontal cortex showed no significant difference (SMD=-0.72; 95% CI, -1.12 to -0.33; P=.10; I2=62%). CONCLUSIONS: Overall, 10-Hz rTMS has a significant effect on analgesia and improved quality of life in patients with FMS but did not improve depression.


Assuntos
Fibromialgia , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Fibromialgia/terapia , Qualidade de Vida , Dor , Manejo da Dor/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Innovation (Camb) ; 3(6): 100342, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36353677

RESUMO

In recent years, more and more single-cell technologies have been developed. A vast amount of single-cell omics data has been generated by large projects, such as the Human Cell Atlas, the Mouse Cell Atlas, the Mouse RNA Atlas, the Mouse ATAC Atlas, and the Plant Cell Atlas. Based on these single-cell big data, thousands of bioinformatics algorithms for quality control, clustering, cell-type annotation, developmental inference, cell-cell transition, cell-cell interaction, and spatial analysis are developed. With powerful experimental single-cell technology and state-of-the-art big data analysis methods based on artificial intelligence, the molecular landscape at the single-cell level can be revealed. With spatial transcriptomics and single-cell multi-omics, even the spatial dynamic multi-level regulatory mechanisms can be deciphered. Such single-cell technologies have many successful applications in oncology, assisted reproduction, embryonic development, and plant breeding. We not only review the experimental and bioinformatics methods for single-cell research, but also discuss their applications in various fields and forecast the future directions for single-cell technologies. We believe that spatial transcriptomics and single-cell multi-omics will become the next booming business for mechanism research and commercial industry.

13.
Micromachines (Basel) ; 13(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144146

RESUMO

The impact of liquid drops on superhydrophobic solid surfaces is ubiquitous and of practical importance in many industrial processes. Here, we study the impingement of droplets on superhydrophobic surfaces with a macroscopic dimple structure, during which the droplet exhibits asymmetric jetting. Systematic experimental investigations and numerical simulations provide insight into the dynamics and underlying mechanisms of the observed phenomenon. The observation is a result of the interaction between the spreading droplet and the dimple. An upward internal flow is induced by the dimple, which is then superimposed on the horizontal flow inside the spreading droplet. As such, an inclined jet is issued asymmetrically into the air. This work would be conducive to the development of an open-space microfluidic platform for droplet manipulation and generation.

14.
Transl Cancer Res ; 11(4): 888-896, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35571654

RESUMO

Background: Autologous hematopoietic stem cell transplantation (AHSCT) is a common method for the clinical treatment of malignant lymphomas that recur after conventional chemotherapy. It has been reported that its efficacy is better than conventional chemotherapy, but the efficacy of its first-line treatment is controversial, and the existing clinical randomized controlled trials have not yet reached a unified conclusion. This work intended to use meta-analysis to systematically evaluate the efficacy and safety of AHSCT in the treatment of malignant lymphoma after high-dose chemotherapy, and draw reliable conclusions to provide reference and basis for clinical application. Methods: The inclusion and exclusion criteria were formulated based on the PICOIS principle. Relevant articles were retrieved from Medline, Excerpta Medica Database (EMBASE), Elton B. Stephens. Company (EBSCO), Ovid Technologies (OVID), China Biomedical Database, and Wanfang. The search period was limited the study published between January 1, 1980 and November 2021. The search terms included malignant lymphoma, autologous hematopoietic stem cell transplantation, AHSCT, high-dose chemotherapy, etc. The study subjects were diagnosed as malignant lymphoma patients. The experimental group was defined as AHSCT after high-dose chemotherapy, and the control group was defined as conventional chemotherapy (the chemotherapy regimen was not limited). The outcome indicators were overall survival (OS), complete remission rate [complete response (CR) + partial response (PR)], and event-free survival (EFS). RevMan5.3 software provided by the Cochrane Collaboration was used for meta-analysis. Results: A total of 6 pieces of literature were included, with 264 cases in the experimental group and 389 cases in the control group. There was no risk of bias in the included literature. The intervention method in the control group was conventional chemotherapy (chemotherapy regimen was not limited). The differences in the rates of overall survival and progression-free survival between the groups were compared, and it was found that the overall survival between groups was [odds ratio (OR) =2.88; 95% confidence interval (CI): 1.78-4.66; Z=4.31; P<0.0001] and progression-free survival rate was (OR =2.70; 95% CI: 1.86-3.92, Z=5.21; P<0.00001). Discussion: AHSCT treatment can significantly prolong the overall survival and progression-free survival rates of patients with malignant lymphoma after chemotherapy.

15.
Langmuir ; 38(18): 5838-5846, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35485639

RESUMO

With the presence of an external magnetic field, a ferrofluid droplet exhibits a rich variety of interesting phenomena notably different from nonmagnetic droplets. Here, a ferrofluid droplet impacting on a liquid-repellent surface is systematically investigated using high-speed imaging. The pre- and post-impact, including the droplet stretching, maximum spreading diameter, and final impact modes, are shown to depend on the impact velocity and the magnitude of the external magnetic field. A scaling relation involving the Weber and magnetic Bond numbers is fitted to predict the maximum spreading diameter based on the magnetic field-induced effective surface tension. The impact outcome is also investigated and classified into three patterns depending on the occurrence of the rim interface instability and the fission phenomenon. Two types of fission (i.e., evenly and unevenly distributed sizes of the daughter droplets) are first identified, and the corresponding mechanism is revealed. Last, according to Rayleigh-Taylor instability, a semiempirical formula is proposed to estimate the number of the daughter droplets in the regime of evenly distributed size, which agrees well with the experimental data. The present study can provide more insight into large-scale droplet generation with monodispersive sizes.

16.
Innovation (Camb) ; 3(2): 100222, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35340393
17.
Chem Rev ; 122(7): 7010-7060, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-34918913

RESUMO

Microfluidics and wettability are interrelated and mutually reinforcing fields, experiencing synergistic growth. Surface wettability is paramount in regulating microfluidic flows for processing and manipulating fluids at the microscale. Microfluidics, in turn, has emerged as a versatile platform for tailoring the wettability of materials. We present a critical review on the microfluidics-enabled soft manufacture (MESM) of materials with well-controlled wettability and their multidisciplinary applications. Microfluidics provides a variety of liquid templates for engineering materials with exquisite composition and morphology, laying the foundation for precisely controlling the wettability. Depending on the degree of ordering, liquid templates are divided into individual droplets, one-dimensional (1D) arrays, and two-dimensional (2D) or three-dimensional (3D) assemblies for the modular fabrication of microparticles, microfibers, and monolithic porous materials, respectively. Future exploration of MESM will enrich the diversity of chemical composition and physical structure for wettability control and thus markedly broaden the application horizons across engineering, physics, chemistry, biology, and medicine. This review aims to systematize this emerging yet robust technology, with the hope of aiding the realization of its full potential.


Assuntos
Microfluídica , Microfluídica/métodos , Porosidade , Molhabilidade
18.
Biophys Rev (Melville) ; 3(2): 021301, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38505416

RESUMO

All-aqueous systems have attracted intensive attention as a promising platform for applications in cell separation, protein partitioning, and DNA extraction, due to their selective separation capability, rapid mass transfer, and good biocompatibility. Reliable generation of all-aqueous droplets with accurate control over their size and size distribution is vital to meet the increasingly growing demands in emulsion-based applications. However, the ultra-low interfacial tension and large effective interfacial thickness of the water-water interface pose challenges for the generation and stabilization of uniform all-aqueous droplets, respectively. Microfluidics technology has emerged as a versatile platform for the precision generation of all-aqueous droplets with improved stability. This review aims to systematize the controllable generation of all-aqueous droplets and summarize various strategies to improve their stability with microfluidics. We first provide a comprehensive review on the recent progress of all-aqueous droplets generation with microfluidics by detailing the properties of all-aqueous systems, mechanisms of droplet formation, active and passive methods for droplet generation, and the property of droplets. We then review the various strategies used to improve the stability of all-aqueous droplets and discuss the fabrication of biomaterials using all-aqueous droplets as liquid templates. We envision that this review will benefit the future development of all-aqueous droplet generation and its applications in developing biomaterials, which will be useful for researchers working in the field of all-aqueous systems and those who are new and interested in the field.

19.
Science ; 373(6561): 1344-1348, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34529472

RESUMO

Conventional understanding has it that a liquid deposited on a surface tends to move along directions that reduce surface energy, which is mainly dictated by surface properties rather than liquid properties, such as surface tension. Achieving well-controlled directional steering remains challenging because the liquid-solid interaction mainly occurs in the two-dimensional (2D) domain. We show that the spreading direction of liquids with different surface tensions can be tailored by designing 3D capillary ratchets that create an asymmetric and 3D spreading profile both in and out of the surface plane. Such directional steering is also accompanied by self-propulsion and high flow velocity, all of which are preferred in liquid transport.

20.
Adv Sci (Weinh) ; 8(21): e2102539, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34473423

RESUMO

The stress-response strategy is one of the nature's greatest developments, enabling animals and plants to respond quickly to environmental stimuli. One example is the stress-response strategy of the Venus flytrap, which enables such a delicate plant to perceive and prey on insects at an imperceptible speed by their soft terminal lobes. Here, inspired by this unique stress-response strategy, a soft gripper that aims at the challenges of high-speed dynamic grasping tasks is presented. The gripper, called high-speed soft gripper (HSG), is based on two basic design concepts. One is a snap-through instability that enables the HSG to sense the mechanical stimuli and actuating instantly. The other one is the spider-inspired pneumatic-powered control system that makes the trigger process repeatable and controllable. Utilizing the stress-response strategy, the HSG can accomplish high-speed sensing and grasping and handle a dynamic grasping task like catching a thrown baseball. Whereas soft machines typically exhibit slow locomotion speed and low manipulation strength for the intrinsic limitations of soft materials, the exploration of the stress-response strategy in this study can help pave the way for designing a new generation of practical high-speed soft robots.


Assuntos
Robótica , Fenômenos Biológicos , Desenho de Equipamento , Poliuretanos/química , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...