Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 260(1): 21-33, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35396652

RESUMO

Ascorbic acid (AsA) is a crucial antioxidant in vegetables. Celery (Apium graveolens L.) is a vegetable of Apiaceae and is rich in AsA. Till now, the effects of different storage conditions on celery morphological characteristics, anatomical features, and antioxidant accumulation are unclear. Here, the celery cvs. 'Sijixiaoxiangqin' and 'Liuhehuangxinqin' were selected as experimental materials, and the two celery plants grown for 65 days were harvested from soils and stored in light at room temperature (25 °C), darkness at low temperature (4 °C), and darkness at room temperature (25 °C) for 0, 6, 24, 30, 48, and 54 h, respectively. The results showed that celery in darkness had better water retention capacity than celery in light. Morphological changes in celery mesophyll, leaf veins, and petioles were the least in darkness at low temperature (4 °C). The weight loss rate and wilting degree in darkness at low temperature (4 °C) were the lowest, and the AsA content remained at a high level. The expression patterns of GDP-D-mannose pyrophosphorylase (AgGMP) and L-galactose dehydrogenase (AgGalDH) were similar to the change of AsA content. The results indicated that low temperature and dark was the optimized storage condition for 'Sijixiaoxiangqin' and 'Liuhehuangxinqin' celery. AgGMP and AgGalDH genes may play an important role in the accumulation of AsA in celery. This paper will provide potential references for prolonging the shelf life of celery and other horticultural crops.


Assuntos
Apium , Ácido Ascórbico , Ácido Ascórbico/metabolismo , Antioxidantes/metabolismo , Verduras/metabolismo , Apium/química , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA