Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ren Fail ; 46(2): 2359638, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38832484

RESUMO

Emerging data have revealed that damage to tubular epithelial cell is a driving force in the progression of diabetic kidney disease (DKD). However, the specific mechanisms by which lipotoxicity contributes to the injury of these cells, thereby influencing the development of DKD, are yet to be fully understood. Here, we analyzed the GSE 30529 microarray datasets of human tubulointerstitial tissue samples from the Gene Expression Omnibus database (GEO). Concurrently, we conducted RNA-sequencing on palmitic acid (PA)-treated human renal proximal tubule epithelial cells (HK2 cells). After normalization, the differentially expressed genes (DEGs) were screened by R software and gene ontology (GO) enrichment analysis was conducted, and lysosomal-associated protein transmembrane 5 (LAPTM5) was finally selected. Our findings indicate that the expression of LAPTM5 was obviously increased in DKD patients, and the correlation between LAPTM5, and other clinical parameters of DKD was analyzed using the Spearman correlation analysis. The potential of LAPTM5 as a prognostic biomarker for DKD was further consolidated through receiver operating characteristic (ROC) analysis. To further verify the function of LAPTM5, we established mouse or in vitro systems mimicking DKD. The results showed that a consistent upregulation of LAPTM5, which was also found to be linked with inflammatory mediators within the context of DKD. Additionally, LAPTM5 silencing significantly downregulated mRNA expression of inflammatory factors in PA-treated HK2 cells. These results indicate that LAPTM5 is a potential biomarker and therapeutic treatment target for DKD. This discovery paves the way for future research and development of targeted interventions aimed at mitigating the progression of this prevalent condition.


Assuntos
Biologia Computacional , Nefropatias Diabéticas , Proteínas de Membrana , Animais , Humanos , Masculino , Camundongos , Biomarcadores/metabolismo , Linhagem Celular , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Ácido Palmítico/metabolismo , Regulação para Cima
2.
Int J Biol Macromol ; 273(Pt 1): 132896, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851619

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive pulmonary disease with an unclear pathogenesis and no available specific drug treatment. The principal etiological factors are lung inflammation caused by environmental factors, damage to alveolar epithelial cells, leading to epithelial-mesenchymal transition (EMT), and the abnormal proliferation of fibroblasts. Here, we have demonstrated that fibroblast growth factor 21 (FGF21) ameliorates IPF via the autophagy pathway. We administered FGF21 to bleomycin (BLM)-treated mice, which ameliorated their defects in lung function, reduced the accumulation of collagen, restored tissue structure, reduced the deposition of hydroxyproline, reduced the expression of collagen I and α-SMA and increased the expression of E-cadherin. The expression of LC3BII and the number of autophagosomes were significantly higher in the lungs. The expression of AKT and mTOR was significantly reduced by FGF21 treatment. We also determined the effects of FGF21 in A549 cells treated with TGF-ß, and found that FGF21 significantly inhibits activation of the AKT signaling pathway, thereby reducing TGF-ß-induced EMT and preventing the uncontrolled proliferation of fibroblasts. We conclude that FGF21 ameliorates IPF by inhibiting the PI3K-AKT-mTOR signaling pathway and activating autophagy, which provides a theoretical basis for FGF21 to be used for the treatment of IPF.


Assuntos
Autofagia , Bleomicina , Transição Epitelial-Mesenquimal , Fatores de Crescimento de Fibroblastos , Fibrose Pulmonar Idiopática , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Serina-Treonina Quinases TOR/metabolismo , Autofagia/efeitos dos fármacos , Animais , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Camundongos , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Bleomicina/efeitos adversos , Células A549 , Masculino , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta/metabolismo
3.
Cell Commun Signal ; 22(1): 191, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528533

RESUMO

BACKGROUND: The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS: Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS: CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS: Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.


Assuntos
Nefropatias Diabéticas , NF-kappa B , Receptores de Interleucina-8B , Animais , Humanos , Camundongos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Glucose , Glicocálix/metabolismo , Inflamação/metabolismo , Camundongos Knockout , NF-kappa B/metabolismo , Receptores de Quimiocinas/uso terapêutico , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo
4.
Sci Adv ; 10(5): eadj7813, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306420

RESUMO

Metabolic syndrome (MetS) is closely associated with an increased risk of dementia and cognitive impairment, and a complex interaction of genetic and environmental dietary factors may be implicated. Free fatty acid receptor 4 (Ffar4) may bridge the genetic and dietary aspects of MetS development. However, the role of Ffar4 in MetS-related cognitive dysfunction is unclear. In this study, we found that Ffar4 expression is down-regulated in MetS mice and MetS patients with cognitive impairment. Conventional and microglial conditional knockout of Ffar4 exacerbated high-fat diet (HFD)-induced cognitive dysfunction and anxiety, whereas microglial Ffar4 overexpression improved HFD-induced cognitive dysfunction and anxiety. Mechanistically, we found that microglial Ffar4 regulated microglial activation through type I interferon signaling. Microglial depletion and NF-κB inhibition partially reversed cognitive dysfunction and anxiety in microglia-specific Ffar4 knockout MetS mice. Together, these findings uncover a previously unappreciated role of Ffar4 in negatively regulating the NF-κB-IFN-ß signaling and provide an attractive therapeutic target for delaying MetS-associated cognitive decline.


Assuntos
Disfunção Cognitiva , Síndrome Metabólica , Receptores Acoplados a Proteínas G , Animais , Humanos , Camundongos , Disfunção Cognitiva/genética , Disfunção Cognitiva/complicações , Síndrome Metabólica/complicações , Síndrome Metabólica/genética , Camundongos Knockout , Microglia/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo
5.
Int J Biol Macromol ; 261(Pt 1): 129797, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290625

RESUMO

FGF21 plays an active role in the treatment of type 2 diabetes, obesity, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). However, the short half-life and poor stability of wild-type FGF21 limit its clinical application. Previous studies found that PEGylation can significantly increase the stability of FGF21. However, the uneven distribution of PEGylation sites in FGF21 makes it difficult to purify PEG-FGF21, thereby affecting its yield, purity, and activity. To obtain long-acting FGF21 with controlled site-specific modification, we mutated lysine residues in FGF21, resulting in PEGylation only at the N-terminus of FGF21 (mFGF21). In addition, we modified mFGF21 molecules with different PEG molecules and selected the PEG-mFGF21 moiety with the highest activity. The yield of PEG-mFGF21 in this study reached 1 g/L (purity >99 %), and the purification process was simple and efficient with strong quality controllability. The half-life of PEG-mFGF21 in rats reached 40.5-67.4 h. Pharmacodynamic evaluation in mice with high-fat, high-cholesterol- and methionine and choline deficiency-induced NASH illustrated that PEG-mFGF21 exhibited long-term efficacy in improving liver steatosis and reducing liver cell damage, inflammation, and fibrosis. Taken together, PEG-mFGF21 could represent a potential therapeutic drug for the treatment of NASH.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/uso terapêutico , Fatores de Crescimento de Fibroblastos/farmacologia , Obesidade/tratamento farmacológico , Fígado
6.
Cell Mol Biol Lett ; 29(1): 17, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243188

RESUMO

Despite notable advancements in the investigation and management of lung adenocarcinoma (LUAD), the mortality rate for individuals afflicted with LUAD remains elevated, and attaining an accurate prognosis is challenging. LUAD exhibits intricate genetic and environmental components, and it is plausible that free fatty acid receptors (FFARs) may bridge the genetic and dietary aspects. The objective of this study is to ascertain whether a correlation exists between FFAR4, which functions as the primary receptor for dietary fatty acids, and various characteristics of LUAD, while also delving into the potential underlying mechanism. The findings of this study indicate a decrease in FFAR4 expression in LUAD, with a positive correlation (P < 0.01) between FFAR4 levels and overall patient survival (OS). Receiver operating characteristic (ROC) curve analysis demonstrated a significant diagnostic value [area under the curve (AUC) of 0.933] associated with FFAR4 expression. Functional investigations revealed that the FFAR4-specific agonist (TUG891) effectively suppressed cell proliferation and induced cell cycle arrest. Furthermore, FFAR4 activation resulted in significant metabolic shifts, including a decrease in oxygen consumption rate (OCR) and an increase in extracellular acidification rate (ECAR) in A549 cells. In detail, the activation of FFAR4 has been observed to impact the assembly process of the mitochondrial respiratory chain complex and the malate-aspartate shuttle process, resulting in a decrease in the transition of NAD+ to NADH and the inhibition of LUAD. These discoveries reveal a previously unrecognized function of FFAR4 in the negative regulation of mitochondrial metabolism and the inhibition of LUAD, indicating its potential as a promising therapeutic target for the treatment and diagnosis of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Proliferação de Células/genética , Transporte de Elétrons , Neoplasias Pulmonares/patologia
7.
Adv Sci (Weinh) ; 11(7): e2307648, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38083975

RESUMO

T-2 toxin causes renal dysfunction with proteinuria and glomerular podocyte damage. This work explores the role of metabolic disorder/reprogramming-mediated epigenetic modification in the progression of T-2 toxin-stimulated podocyte injury. A metabolomics experiment is performed to assess metabolic responses to T-2 toxin infection in human podocytes. Roles of protein O-linked-N-acetylglucosaminylation (O-GlcNAcylation) in regulating T-2 toxin-stimulated podocyte injury in mouse and podocyte models are assessed. O-GlcNAc target proteins are recognized by mass spectrometry and co-immunoprecipitation experiments. Moreover, histone acetylation and autophagy levels are measured. T-2 toxin infection upregulates glucose transporter type 1 (GLUT1) expression and enhances hexosamine biosynthetic pathway in glomerular podocytes, resulting in a significant increase in ß-arrestin-1 O-GlcNAcylation. Decreasing ß-arrestin-1 or O-GlcNAc transferase (OGT) effectively prevents T-2 toxin-induced renal dysfunction and podocyte injury. Mechanistically, O-GlcNAcylation of ß-arrestin-1 stabilizes ß-arrestin-1 to activate the mammalian target of rapamycin (mTOR) pathway as well as to inhibit autophagy during podocyte injury by promoting H4K16 acetylation. To sum up, OGT-mediated ß-arrestin-1 O-GlcNAcylation is a vital regulator in the development of T-2 toxin-stimulated podocyte injury via activating the mTOR pathway to suppress autophagy. Targeting ß-arrestin-1 or OGT can be a potential therapy for T-2 toxin infection-associated glomerular injury, especially podocyte injury.


Assuntos
Nefropatias , Podócitos , Toxina T-2 , Camundongos , Humanos , Animais , Acetilação , Histonas/metabolismo , Podócitos/metabolismo , beta-Arrestina 1/metabolismo , Toxina T-2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Nefropatias/metabolismo , Mamíferos/metabolismo
9.
Int J Biol Macromol ; 253(Pt 1): 126553, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657572

RESUMO

Several investigations have examined the involvement of free fatty acid receptor 4 (FFAR4) in metabolic disorders, but its action remains controversial. To investigate whether endogenous fibroblast growth factor 21 (FGF21)-mediated signaling controls the metabolic status in FFAR4-deficient mice, we generated FFAR4/FGF21 double knockout (DKO) mice. We also evaluated the role of FGF21 on glucose and lipid metabolism in FFAR4 KO mice fed a high-fat diet. Levels of FGF21 were significantly increased in FFAR4-deficient mice and double deletion of FGF21 and FFAR4 led to severe metabolic disorders. Additionally, FFAR4/FGF21 DKO mice displayed metabolic abnormalities that may be caused by decreased energy expenditure. Collectively, this study characterized the effects of endogenous FGF21, which acts as a master feedback regulator in the absence of FFAR4.


Assuntos
Fatores de Crescimento de Fibroblastos , Doenças Metabólicas , Animais , Camundongos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Metabolismo Energético/genética , Glucose/metabolismo , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
10.
J Cancer Res Clin Oncol ; 149(18): 16931-16946, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37698682

RESUMO

PURPOSE: Metformin has been used clinically for more than six decades. Over time, numerous remarkable effects of metformin beyond the clinic have been discovered and discussed. Metformin has been shown to have a favorable impact on cancer therapy in addition to its clinically recognized hypoglycemic effect. However, the antitumor efficacy of metformin in humans has not been clearly demonstrated yet. Hence, a systematic analysis of the existing trials is necessary. METHODS: Here, we retrieved clinical trials from the Clinical Trials.gov database to overview the clinical development of metformin for the treatment of cancer, analyze existing clinical results, and summarize some promising applications for specific cancer therapies. RESULTS: The potential application of metformin contains three directions: Firstly, improvement of metabolic factors associated with treatment effects, such as insulin resistance and peripheral neuropathy. Secondly, in combination with immune checkpoint blockade effects. Finally, use it for the endocrine treatment of hormone-dependent cancers. CONCLUSION: Although the outcomes of metformin as a repurposed agent in some trials have been unsatisfactory, it still has the potential to be used in select cancer therapy settings.


Assuntos
Resistência à Insulina , Metformina , Neoplasias , Humanos , Metformina/uso terapêutico , Hipoglicemiantes/uso terapêutico , Neoplasias/tratamento farmacológico
11.
Cell Commun Signal ; 21(1): 268, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777801

RESUMO

Due to the complexity and incomplete understanding of the crosstalk between liver and adipose tissue, especially the processes of hepatic lipogenesis and adipogenic differentiation, there are currently no effective drugs for the treatment of nonalcoholic fatty liver disease (NAFLD). Stearoyl-coenzyme A desaturase 1 (SCD1), which is abundantly expressed in liver and adipose tissue, may mediate the cross-talk between liver and adipose tissue. Thus, it is essential to develop specific SCD1 inhibitors that target the liver-adipose axis. Herein, we identified a novel SCD1 inhibitor, E6446, through a high-throughput virtual screen. E6646 significantly inhibited adipogenic differentiation and hepatic lipogenesis via SCD1-ATF3 signaling. The SPR results showed that E6446 had a strong interaction ability with SCD1 (KD:4.61 µM). Additionally, E6646 significantly decreased hepatic steatosis, hepatic lipid droplet accumulation and insulin resistance in high-fat diet (HFD)-fed mice. Taken together, our findings not only suggest that E6446 can serve as a new, safe and highly effective anti-NAFLD agent for future clinical use but also provide a molecular basis for the future development of SCD1 inhibitors that inhibit both adipogenic differentiation and hepatic lipogenesis. Video Abstract.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Lipogênese , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
12.
Materials (Basel) ; 16(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241236

RESUMO

To solve the problems of high nitriding temperature and long nitriding time with conventional plasma nitriding technologies, a kind of low-temperature plasma oxy-nitriding technology containing two-stage processes with different ratios of N to O was developed on a TC4 alloy in this paper. A thicker permeation coating can be obtained with this new technology compared to conventional plasma nitriding technology. The reason for this is that the oxygen introduction in the first two-hour oxy-nitriding step can break the continuous TiN layer, which facilitates the quick and deep diffusion of the solution-strengthening elements of O and N into the titanium alloy. Moreover, an inter-connected porous structure was formed under a compact compound layer, which acts as a buffer layer to absorb the external wear force. Therefore, the resultant coating showed the lowest COF values during the initial wear state, and almost no debris and cracks were detected after the wear test. For the treated samples with low hardness and no porous structure, fatigue cracks can easily form on the surface, and bulk peeling-offcan occur during the wear course.

13.
Eur J Pharmacol ; 952: 175811, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37245859

RESUMO

Fibroblast growth factor 21 (FGF21) and glucagon-like peptide-1 (GLP-1) may be useful for the treatment of type 2 diabetes, obesity, and non-alcoholic fatty liver disease (NAFLD). Previous studies have shown that GLP-1 may synergize with FGF21 in the regulation of glucose and lipid metabolism. Currently, no approved drug therapy is available for non-alcoholic steatohepatitis (NASH). Here, we constructed and screened dual-targeting fusion proteins of GLP-1 and FGF21, connected by elastin-like polypeptides (ELPs), to investigate whether a combination of these two hormones would have therapeutic effects in models of NASH. The temperature phase transition and release of the hormones under physiological conditions were studied to identify a bifunctional fusion protein of FGF21 and GLP-1 (GEF) that was highly stable and showed sustained release. We further evaluated the quality and therapeutic efficacy of GEF in three mouse models of NASH. We successfully synthesized a novel recombinant bifunctional fusion protein with high stability and low immunogenicity. The GEF protein synthesized ameliorated hepatic lipid accumulation, hepatocyte damage, and inflammation; prevented the progression of NASH in the three models; reduced glycemia; and caused weight loss. This novel GEF molecule may be suitable for clinical use for the treatment of NAFLD/NASH and related metabolic diseases.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo
14.
Sensors (Basel) ; 23(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050564

RESUMO

Unmanned aerial vehicles (UAVs) employed as airborne base stations (BSs) are considered the essential components in future sixth-generation wireless networks due to their mobility and line-of-sight communication links. For a UAV-assisted ad hoc network, its total channel capacity is greatly influenced by the deployment of UAV-BSs and the corresponding coverage layouts, where square and hexagonal cells are partitioned to divide the zones individual UAVs should serve. In this paper, the total channel capacities of these two kinds of coverage layouts are evaluated using our proposed novel computationally efficient channel capacity estimation scheme. The mean distance (MD) between a UAV-BS in the network and its served users as well as the MD from these users to the neighboring UAV-BSs are incorporated into the estimation of the achievable total channel capacity. We can significantly reduce the computational complexity by using a new polygon division strategy. The simulation results demonstrate that the square cell coverage layout can always lead to a superior channel capacity (with an average increase of 7.67% to be precise) to the hexagonal cell coverage layout for UAV-assisted ad hoc networks.

15.
Pharmaceutics ; 15(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111702

RESUMO

Tumor microenvironment (TME)-induced nanocatalytic therapy is a trending strategy for tumor-targeting therapy, but the low catalytic efficiency remains to limit its therapeutic effect. The single-atom catalysts (SACs) appear as a novel type of nanozymes that possesses incredible catalytic activity. Here, we developed PEGylated manganese/iron-based SACs (Mn/Fe PSACs) by coordinating single-atom Mn/Fe to nitrogen atoms in hollow zeolitic imidazolate frameworks (ZIFs). Mn/Fe PSACs catalyze cellular hydrogen peroxide (H2O2) converting to hydroxyl radical (•OH) through a Fenton-like reaction; it also enhances the decomposition of H2O2 to O2 that continuously converts to cytotoxic superoxide ion (•O2-) via oxidase-like activity. Mn/Fe PSACs can reduce the depletion of reactive oxygen species (ROS) by consuming glutathione (GSH). Here, we demonstrated the Mn/Fe PSACs-mediated synergistic antitumor efficacy among in vitro and in vivo experiments. This study proposes new promising single-atom nanozymes with highly efficient biocatalytic sites and synergistic therapeutic effects, which will give birth to abundant inspirations in ROS-related biological applications in broad biomedical fields.

16.
Nutrients ; 15(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36771292

RESUMO

The gut-liver axis plays a key role in the development and progression of non-alcoholic fatty liver disease (NAFLD). Due to the complexity and incomplete understanding of the cross-talk between the gut and liver, effective therapeutic targets are largely unknown. Free fatty acid receptors (FFARs) may bridge the cross-talk between the gut and liver. FFAR4 has received considerable attention due to its important role in lipid metabolism. However, the role of FFAR4 in this cross talk in NAFLD remains unclear. In this study, mice with high endogenous n-3 PUFAs but FFAR4 deficiency were generated by crossbreeding Fat-1 and FFAR4 knockout mice. FFAR4 deficiency blocked the protective effects of high endogenous n-3 PUFAs on intestinal barrier dysfunction and hepatic steatosis. In addition, FFAR4 deficiency decreased gut microbiota diversity and enriched Rikenella, Anaerotruncus, and Enterococcus, and reduced Dubosiella, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, Coriobacteriaceae UCG-002, Faecalibaculum, Ruminococcaceae UCG-009, and Akkermansia. Notably, FFAR4 deficiency co-regulated pantothenic acid and CoA biosynthesis, ß-alanine metabolism, and sphingolipid metabolism pathways in the gut and liver, potentially associated with the aggravation of NAFLD. Together, the beneficial effects of n-3 PUFAs on the gut and liver were mediated by FFAR4, providing insights on the role of FFAR4 in the treatment of NAFLD through the gut-liver axis.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Receptores Acoplados a Proteínas G , Animais , Camundongos , Fenômenos Fisiológicos Celulares , Dieta Hiperlipídica , Ácidos Graxos Ômega-3/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
17.
J Alzheimers Dis ; 91(2): 767-778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36502325

RESUMO

BACKGROUND: Resting-state function MRI (rs-fMRI) research on successful aging can provide insight into the mechanism of aging with a different perspective from aging-related disease. OBJECTIVE: rs-fMRI research was used to analyze the brain function characteristics of successful aging. METHODS: A total of 47 usual aging individuals and 26 successful aging (SA) individuals underwent rs-fMRI scans and neuropsychological tests. Volume-based rs-fMRI data analysis was performed with DPASF to obtain ALFF, ReHo, DC, and VMHC. RESULTS: The SA group showed increased ALFF in right opercular part of inferior frontal gyrus (Frontal_Inf_Oper_R) and right supramarginal gyrus; increased ReHo in right middle temporal pole gyrus and decreased ReHo in left superior frontal gyrus and middle occipital gyrus; increased DC in right medial orbitofrontal gyrus and pulvinar part of thalamus; decreased DC in left fusiform gyrus and right medial frontal gyrus; increased VMHC in right medial orbitofrontal gyrus; and decreased VMHC in the right superior temporal gyrus, right and left middle temporal gyrus, right and left triangular part of inferior frontal gyrus. ALFF in Frontal_Inf_Oper_R were found to be significantly correlated with MMSE scores (r = 0.301, p = 0.014) and ages (r = -0.264, p = 0.032) in all subjects, which could be used to distinguish the SA (AUC = 0.733, 95% CI: 0.604-0.863) by ROC analysis. CONCLUSION: The brain regions with altered fMRI characteristics in SA group were concentrated in frontal (6 brain regions) and temporal (4 brain regions) lobes. ALFF in Frontal_Inf_Oper_R was significantly correlated to cognitive function and ages, which might be used to distinguish the SA.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , China , Envelhecimento
18.
J Cachexia Sarcopenia Muscle ; 14(1): 606-621, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564038

RESUMO

BACKGROUND: Sarcopenia, the age-related decline in skeletal muscle mass and function, diminishes life quality in elderly people. Improving the capacity of skeletal muscle differentiation is expected to counteract sarcopenia. However, the mechanisms underlying skeletal muscle differentiation are complex, and effective therapeutic targets are largely unknown. METHODS: The human Gene Expression Omnibus database, aged mice and primary skeletal muscle cells were used to assess the expression level of pyruvate dehydrogenase B (PDHB) in human and mouse aged state. d-Galactose (d-gal)-induced sarcopenia mouse model and two classic cell models (C2C12 and HSkMC) were used to assess the myogenic effect of PDHB and the underlying mechanisms via immunocytochemistry, western blotting, quantitative real-time polymerase chain reaction, RNA interference or overexpression, dual-luciferase reporter assay, RNA sequencing and untargeted metabolomics. RESULTS: We identified that a novel target PDHB promoted myogenic differentiation. PDHB expression decreased in aged mouse muscle relative to the young state (-50% of mRNA level, P < 0.01) and increased during mouse and primary human muscle cell differentiation (+3.97-fold, P < 0.001 and +3.79-fold, P < 0.001). Knockdown or overexpression of PDHB modulated the expression of genes related to muscle differentiation, namely, myogenic factor 5 (Myf5) (-46%, P < 0.01 and -27%, P < 0.05; +1.8-fold, P < 0.01), myogenic differentiation (MyoD) (-55%, P < 0.001 and -34%, P < 0.01; +2.27-fold, P < 0.001), myogenin (MyoG) (-60%, P < 0.001 and -70%, P < 0.001; +5.46-fold, P < 0.001) and myosin heavy chain (MyHC) (-70%, P < 0.001 and -69%, P < 0.001; +3.44-fold, P < 0.001) in both C2C12 cells and HSkMC. Metabolomic and transcriptomic analyses revealed that PDHB knockdown suppressed pyruvate metabolism (P < 0.001) and up-regulated ariadne RBR E3 ubiquitin protein ligase 2 (Arih2) (+7.23-fold, P < 0.001) in cellular catabolic pathways. The role of forkhead box P1 (FoxP1) (+4.18-fold, P < 0.001)-mediated Arih2 transcription was the key downstream regulator of PDHB in muscle differentiation. PDHB overexpression improved d-gal-induced muscle atrophy in mice, which was characterized by significant increases in grip strength, muscle mass and mean muscle cross-sectional area (1.19-fold to 1.5-fold, P < 0.01, P < 0.05 and P < 0.001). CONCLUSIONS: The comprehensive results show that PDHB plays a sarcoprotective role by suppressing the FoxP1-Arih2 axis and may serve as a therapeutic target in sarcopenia.


Assuntos
Sarcopenia , Idoso , Humanos , Camundongos , Animais , Sarcopenia/metabolismo , Mioblastos/metabolismo , Diferenciação Celular/genética , Oxirredutases/metabolismo , Oxirredutases/farmacologia , Piruvatos/metabolismo , Piruvatos/farmacologia , Proteínas Repressoras , Fatores de Transcrição Forkhead , Ubiquitina-Proteína Ligases/metabolismo
19.
Front Pharmacol ; 13: 942061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506560

RESUMO

Background: The rising prevalence of obesity and its complications is a big challenge for the global public health. Obesity is accompanied by biological dysfunction of skeletal muscle and the development of muscle atrophy. The deep knowledge of key molecular mechanisms underlying myogenic differentiation is crucial for discovering novel targets for the treatment of obesity and obesity-related muscle atrophy. However, no effective target is currently known for obesity-induced skeletal muscle atrophy. Methods: Transcriptomic analyses were performed to identify genes associated with the regulation of myogenic differentiation and their potential mechanisms of action. C2C12 cells were used to assess the myogenic effect of Apol9a through immunocytochemistry, western blotting, quantitative polymerase chain reaction, RNA interference or overexpression, and lipidomics. Results: RNA-seq of differentiated and undifferentiated C2C12 cells revealed that Apol9a expression significantly increased following myogenic differentiation and decreased during obesity-induced muscle atrophy. Apol9a silencing in these C2C12 cells suppressed the expression of myogenesis-related genes and reduced the accumulation of intracellular triglycerides. Furthermore, RNA-seq and western blot results suggest that Apol9a regulates myogenic differentiation through the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). This assumption was subsequently confirmed by intervention with PD98059. Conclusion: In this study, we found that Apol9a regulates myogenic differentiation via the ERK1/2 pathway. These results broaden the putative function of Apol9a during myogenic differentiation and provide a promising therapeutic target for intervention in obesity and obesity-induced muscle atrophy.

20.
J Alzheimers Dis ; 89(2): 669-679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912742

RESUMO

BACKGROUND: For community-dwelling elderly individuals without enough clinical data, it is important to develop a method to predict their dementia risk and identify risk factors for the formulation of reasonable public health policies to prevent dementia. OBJECTIVE: A community elderly survey data was used to establish machine learning prediction models for dementia and analyze the risk factors. METHODS: In a cluster-sample community survey of 9,387 elderly people in 5 subdistricts of Wuxi City, data on sociodemographics and neuropsychological self-rating scales for depression, anxiety, and cognition evaluation were collected. Machine learning models were developed to predict their dementia risk and identify risk factors. RESULTS: The random forest model (AUC = 0.686) had slightly better dementia prediction performance than logistic regression model (AUC = 0.677) and neural network model (AUC = 0.664). The sociodemographic data and psychological evaluation revealed that depression (OR = 3.933, 95% CI = 2.995-5.166); anxiety (OR = 2.352, 95% CI = 1.577-3.509); multiple physical diseases (OR = 2.486, 95% CI = 1.882-3.284 for three or above); "disability, poverty or no family member" (OR = 1.859, 95% CI = 1.337-2.585) and "empty nester" (OR = 1.339, 95% CI = 1.125-1.595) in special family status; "no spouse now" (OR = 1.567, 95% CI = 1.118-2.197); age older than 80 years (OR = 1.645, 95% CI = 1.335-2.026); and female (OR = 1.214, 95% CI = 1.048-1.405) were risk factors for suspected dementia, while a higher education level (OR = 0.365, 95% CI = 0.245-0.546 for college or above) was a protective factor. CONCLUSION: The machine learning models using sociodemographic and psychological evaluation data from community surveys can be used as references for the prevention and control of dementia in large-scale community populations and the formulation of public health policies.


Assuntos
Demência , Vida Independente , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Demência/diagnóstico , Demência/epidemiologia , Feminino , Humanos , Aprendizado de Máquina , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...