Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 27(7): 076003, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25629772

RESUMO

Atomic-scale magnetic nanostructures are promising candidates for future information processing devices. Utilizing external electric field to manipulate their magnetic properties is an especially thrilling project. Here, by carefully identifying the different contributions of each atomic orbital to the magnetic anisotropy energy (MAE) of the ferromagnetic metal films, we argue that it is possible to engineer both the MAE and the magnetic response to the electric field of atomic-scale magnetic nanostructures. Taking the iron monolayer as a matrix, we propose several interesting iron nanostructures with dramatically different magnetic properties. Such nanostructures could exhibit a strong magnetoelectric effect. Our work may open new avenues to the artificial design of electrically controlled magnetic devices.

2.
Sci Rep ; 4: 4117, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24844293

RESUMO

Combined methods of first-principles calculations and Landau-Lifshitz-Gilbert (LLG) macrospin simulations are performed to investigate the coherent magnetization switching in the MgO/FePt/Pt(001)-based magnetic tunnel junctions triggered by short pulses of electric field through the control of magnetic anisotropy energy (MAE) electrically. First-principles calculations indicate that the MAE of MgO/FePt/Pt(001) film varies linearly with the change of the electric field, whereas the LLG simulations show that the change in MAE by electric field pulses could induce the in-plane magnetization reversal of the free layer by tuning the pulse parameters. We find that there exist a critical pulse width τmin to switch the in-plane magnetization, and this τmin deceases with the increasing pulse amplitude E0. Besides, the magnetization orientation cannot be switched when the pulse width exceeds a critical value τmax, and τmax increases asymptotically with E0. In addition, there exist some irregular switching areas at short pulse width due to the high precessional frequency under small initial angle. Finally, a successive magnetization switching can be achieved by a series of electric field pulses.

3.
J Phys Condens Matter ; 25(39): 396001, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23945470

RESUMO

Using first-principles density-functional theory calculations, we systematically investigate the magnetic anisotropy of the multilayer system Cu/(FePt)n/MgO, a promising spintronics structure. Particularly, we have studied the influence of the epitaxial strain, thickness of the ferromagnetic layer, and different interfaces on the magnetic anisotropy energy (MAE) of the system. It is found that the thickness of FePt has slight influence on the MAE, while the increase of the in-plane lattice constant a, or tensile strain, can significantly reduce and even change the sign of the MAE. The calculated density of states shows that the occupation number of the minority spin channel of Fe dx(2)-y(2) orbital decreases with the increase of a, which leads to the reduction of the orbital moment anisotropy of the Fe atom and therefore the decrease of MAE. We also consider the influence of the Cu/FePt and FePt/MgO interfaces on the MAE, and find that both interfaces can reduce the MAE. Especially, the effect of the Cu/FePt interface is more pronounced due to the increased occupation number of the minority spin channel of Fe dz(2) orbital.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...