Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zool Res ; 44(6): 1132-1145, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37963840

RESUMO

Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder that leads to cognitive impairment and memory loss. Emerging evidence suggests that autophagy plays an important role in the pathogenesis of AD through the regulation of amyloid-beta (Aß) and tau metabolism, and that autophagy dysfunction exacerbates amyloidosis and tau pathology. Therefore, targeting autophagy may be an effective approach for the treatment of AD. Animal models are considered useful tools for investigating the pathogenic mechanisms and therapeutic strategies of diseases. This review aims to summarize the pathological alterations in autophagy in representative AD animal models and to present recent studies on newly discovered autophagy-stimulating interventions in animal AD models. Finally, the opportunities, difficulties, and future directions of autophagy targeting in AD therapy are discussed.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/veterinária , Peptídeos beta-Amiloides , Autofagia/fisiologia , Modelos Animais
2.
In Vitro Cell Dev Biol Anim ; 59(4): 241-255, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37099179

RESUMO

Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5' end splice donor and 3' end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a MSTN knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous CD163, IGF2, and MSTN in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5'-GT) of intron 2 of the porcine MSTN gene. A porcine single-cell clone carrying a homozygous mutation (5'-GC) in the conserved sequence (5'-GT) of the intron 2 splice donor of the MSTN gene was successfully generated after drug selection. Unfortunately, the MSTN gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine MSTN gene, which may provide a new strategy for gene knockout in pigs.


Assuntos
Adenina , Edição de Genes , Animais , Suínos , Éxons/genética , Mutação , Técnicas de Inativação de Genes
3.
Biotechnol Lett ; 44(1): 59-76, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34997407

RESUMO

Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9, Adenine base editor (ABE) convert single A·T pairs to G·C pairs in the genome without generating DNA double-strand breaks, and this method has higher accuracy and biosafety in pig genetic modification. However, the application of ABE in pig gene knockout is limited by protospacer-adjacent motif sequences and the base-editing window. Alternative mRNA splicing is an important mechanism underlying the formation of proteins with diverse functions in eukaryotes. Spliceosome recognizes the conservative sequences of splice donors and acceptors in a precursor mRNA. Mutations in these conservative sequences induce exon skipping, leading to proteins with novel functions or to gene inactivation due to frameshift mutations. In this study, adenine base-editing-mediated exon skipping was used to expand the application of ABE in the generation of gene knockout pigs. We first constructed a modified "all-in-one" ABE vector suitable for porcine somatic cell transfection that contained an ABE for single-base editing and an sgRNA expression cassette. The "all-in-one" ABE vector induced efficient sgRNA-dependent A-to-G conversions in porcine cells during single base-editing of multiple endogenous gene loci. Subsequently, an ABE system was designed for single adenine editing of the conservative splice acceptor site (AG sequence at the 3' end of the intron 5) and splice donor site (GT sequence at the 5' end of the intron 6) in the porcine gene GHR; this method achieved highly efficient A-to-G conversion at the cellular level. Then, porcine single-cell colonies carrying a biallelic A-to-G conversion in the splice acceptor site in the intron 5 of GHR were generated. RT-PCR indicated exon 6 skipped at the mRNA level. Western blotting revealed GHR protein loss, and gene sequencing showed no sgRNA-dependent off-target effects. These results demonstrate accurate adenine base-editing-mediated exon skipping and gene knockout in porcine cells. This is the first proof-of-concept study of adenine base-editing-mediated exon skipping for gene regulation in pigs, and this work provides a new strategy for accurate and safe genetic modification of pigs for agricultural and medical applications.


Assuntos
Adenina , Edição de Genes , Adenina/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Éxons/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes , Suínos
4.
Biotechnol Lett ; 43(9): 1699-1714, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34189671

RESUMO

Bama minipig is a unique miniature swine bred from China. Their favorable characteristics include delicious meat, strong adaptability, tolerance to rough feed, and high levels of stress tolerance. Unfavorable characteristics are their low lean meat percentage, high fat content, slow growth rate, and low feed conversion ratio. Genome-editing technology using CRISPR/Cas9 efficiently knocked out the myostatin gene (MSTN) that has a negative regulatory effect on muscle production, effectively promoting pig muscle growth and increasing lean meat percentage of the pigs. However, CRISPR/Cas9 genome editing technology is based on random mutations implemented by DNA double-strand breaks, which may trigger genomic off-target effects and chromosomal rearrangements. The application of CRISPR/Cas9 to improve economic traits in pigs has raised biosafety concerns. Base editor (BE) developed based on CRISPR/Cas9 such as cytosine base editor (CBE) effectively achieve targeted modification of a single base without relying on DNA double-strand breaks. Hence, the method has greater safety in the genetic improvement of pigs. The aim of the present study is to utilize a modified CBE to generate MSTN-knockout cells of Bama minipigs. Our results showed that the constructed "all-in-one"-modified CBE plasmid achieved directional conversion of a single C·G base pair to a T·A base pair of the MSTN target in Bama miniature pig fibroblast cells. We successfully constructed multiple single-cell colonies of Bama minipigs fibroblast cells carrying the MSTN premature termination and verified that there were no genomic off-target effects detected. This study provides a foundation for further application of somatic cell cloning to construct MSTN-edited Bama minipigs that carry only a single-base mutation and avoids biosafety risks to a large extent, thereby providing experience and a reference for the base editing of other genetic loci in Bama minipigs.


Assuntos
Citosina/metabolismo , Fibroblastos/citologia , Edição de Genes/métodos , Miostatina/genética , Animais , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Códon de Terminação , Fibroblastos/metabolismo , Plasmídeos/genética , Suínos , Porco Miniatura , Transfecção
5.
Reprod Domest Anim ; 55(10): 1314-1327, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32679613

RESUMO

CRISPR/Cas9-mediated genome editing technology is a simple and highly efficient and specific genome modification approach with wide applications in the animal industry. CRISPR/Cas9-mediated genome editing combined with somatic cell nuclear transfer rapidly constructs gene-edited somatic cell-cloned pigs for the genetic improvement of traits or simulation of human diseases. Chinese Bama pigs are an excellent indigenous minipig breed from Bama County of China. Research on genome editing of Chinese Bama pigs is of great significance in protecting its genetic resource, improving genetic traits and in creating disease models. This study aimed to address the disadvantages of slow growth and low percentage of lean meat in Chinese Bama pigs and to knock out the myostatin gene (MSTN) by genome editing to promote growth and increase lean meat production. We first used CRISPR/Cas9-mediated genome editing to conduct biallelic knockout of the MSTN, followed by somatic cell nuclear transfer to successfully generate MSTN biallelic knockout Chinese Bama pigs, which was confirmed to have significantly faster growth rate and showed myofibre hyperplasia when they reached sexual maturity. This study lays the foundation for the rapid improvement of production traits of Chinese Bama pigs and the generation of gene-edited disease models in this breed.


Assuntos
Sistemas CRISPR-Cas , Miostatina/genética , Porco Miniatura/genética , Animais , Feminino , Técnicas de Inativação de Genes/veterinária , Masculino , Fibras Musculares Esqueléticas/fisiologia , Técnicas de Transferência Nuclear/veterinária , Carne de Porco , Suínos , Porco Miniatura/crescimento & desenvolvimento
6.
Biotechnol Lett ; 42(11): 2091-2109, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32494996

RESUMO

OBJECTIVES: Guangdong Small-ear Spotted (GDSS) pigs are a pig breed native to China that possesses unfortunate disadvantages, such as slow growth rate, low lean-meat percentage, and reduced feed utilization. In contrast to traditional genetic breeding methods with long cycle time and high cost, CRISPR/Cas9-mediated gene editing for the modification of the pig genome can quickly improve production traits, and therefore this technique exhibits important potential in the genetic improvement and resource development of GDSS pigs. In the present study, we aimed to establish an efficient CRISPR/Cas9-mediated gene-editing system for GDSS pig cells by optimizing the electrotransfection parameters, and to realize efficient CRISPR/Cas9-mediated gene editing of GDSS pig cells. RESULTS: After optimization of electrotransfection parameters for the transfection of GDSS pig cells, we demonstrated that a voltage of 150 V and a single pulse with a pulse duration of 20 ms were the optimal electrotransfection parameters for gene editing in these cells. In addition, our study generated GDSS pig single-cell colonies with biallelic mutations in the myostatin (MSTN) gene and insulin-like growth factor 2 (IGF2) intron-3 locus, which play an important role in pig muscle growth and muscle development. The single-cell colonies showed no foreign gene integration or off-target effects, and maintained normal cell morphology and viability. These gene-edited, single-cell colonies can in the future be used as donor cells to generate MSTN- and IGF2-edited GDSS pigs using somatic cell nuclear transfer (SCNT). CONCLUSIONS: This study establishes the foundation for genetic improvement and resource development of GDSS pigs using CRISPR/Cas9-mediated gene editing combined with SCNT.


Assuntos
Edição de Genes/métodos , Fator de Crescimento Insulin-Like II/genética , Miostatina/genética , Transfecção/métodos , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Fenômenos Eletromagnéticos , Mutação , Seleção Artificial , Análise de Célula Única , Suínos
7.
In Vitro Cell Dev Biol Anim ; 55(10): 784-792, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31456163

RESUMO

Dwarfism, also known as growth hormone deficiency (GHD), is a disease caused by genetic mutations that result in either a lack of growth hormone or insufficient secretion of growth hormone, resulting in a person's inability to grow normally. In the past, many studies focusing on GHD have made use of models of other diseases such as metabolic or infectious diseases. A viable GHD specific model system has not been used previously, thus limiting the interpretation of GHD results. The Bama minipig is unique to Guangxi province and has strong adaptability and disease resistance, and an incredibly short stature, which is especially important for the study of GHD. In addition, studies of GHR knockout Bama minipigs and GHR knockout Bama minipig fibroblast cells generated using CRISPR/Cas9 have not been previously reported. Therefore, the Bama minipig was selected as an animal model and as a tool for the study of GHD in this work. In this study, a Cas9 plasmid with sgRNA targeting the first exon of the GHR gene was transfected into Bama minipig kidney fibroblast cells to generate 22 GHR knockout Bama minipig kidney fibroblast cell lines (12 male monoclonal cells and 10 female monoclonal cells). After culture and identification, 11 of the 12 male clone cell lines showed double allele mutations, and the rate of positive alteration of GHR was 91.67%. Diallelic mutation of the target sequence occurred in 10 female clonal cell lines, with an effective positive mutation rate of 100%. Our experimental results not only showed that CRISPR/Cas9 could efficiently be used for gene editing in Bama minipig cells but also identified a highly efficient target site for the generation of a GHR knockout in other porcine models. Thus, the generation of GHR knockout male and female Bama fibroblast cells could lay a foundation for the birth of a future dwarfism model pig. We anticipate that the "mini" Bama minipig will be of improved use for biomedical and agricultural scientific research and for furthering our understanding of the genetic underpinnings of GHD.


Assuntos
Sistemas CRISPR-Cas , Fibroblastos/fisiologia , Receptores da Somatotropina/genética , Porco Miniatura/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular , Feminino , Edição de Genes , Técnicas de Inativação de Genes , Homozigoto , Masculino , Mutação , Suínos
8.
Reprod Domest Anim ; 53(6): 1546-1554, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30085375

RESUMO

Huanjiang Xiang pig is a unique native minipig breed originating in Guangxi, China, and has great utility value in agriculture and biomedicine. Reproductive biotechnologies such as somatic cell nuclear transfer (SCNT) and SCNT-mediated genetic modification show great potential value in genetic preservation and utilization of Huanjiang Xiang pigs. Our previous work has successfully produced cloned and transgenic-cloned embryos using somatic cells from a Huanjiang Xiang pig. In this study, we firstly report the generation of transgenic-cloned Huanjiang Xiang pigs carrying an enhanced green fluorescent protein (eGFP) gene. A total of 504 SCNT-derived embryos were transferred to two surrogate recipients, one of which became pregnant and gave birth to three live piglets. Exogenous eGFP transgene had integrated in all of the three Huanjiang Xiang piglets identified by genotyping. Furthermore, expression of eGFP was also detected from in vitro cultured skin fibroblast cells and various organs or tissues from positive transgenic-cloned Huanjiang Xiang pigs. The present work provides a practical method to preserve this unique genetic resource and also lays a foundation for genetic modification of Huanjiang Xiang pigs with improved values in agriculture and biomedicine.


Assuntos
Clonagem de Organismos/veterinária , Proteínas de Fluorescência Verde/genética , Porco Miniatura/genética , Animais , Animais Geneticamente Modificados , Clonagem de Organismos/métodos , Desenvolvimento Embrionário , Feminino , Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Gravidez , Suínos/genética , Transgenes
9.
Sci Rep ; 8(1): 12420, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127453

RESUMO

Parkinson's disease (PD) is a common, progressive neurodegenerative disorder characterized by classical motor dysfunction and is associated with α-synuclein-immunopositive pathology and the loss of dopaminergic neurons in the substantia nigra (SN). Several missense mutations in the α-synuclein gene SCNA have been identified as cause of inherited PD, providing a practical strategy to generate genetically modified animal models for PD research. Since minipigs share many physiological and anatomical similarities to humans, we proposed that genetically modified minipigs carrying PD-causing mutations can serve as an ideal model for PD research. In the present study, we attempted to model PD by generating Guangxi Bama minipigs with three PD-causing missense mutations (E46K, H50Q and G51D) in SCNA using CRISPR/Cas9-mediated gene editing combining with somatic cell nuclear transfer (SCNT) technique. We successfully generated a total of eight SCNT-derived Guangxi Bama minipigs with the desired heterozygous SCNA mutations integrated into genome, and we also confirmed by DNA sequencing that these minipigs expressed mutant α-synuclein at the transcription level. However, immunohistochemical analysis was not able to detect PD-specific pathological changes such as α-synuclein-immunopositive pathology and loss of SN dopaminergic neurons in the gene-edited minipigs at 3 months of age. In summary, we successfully generated Guangxi Bama minipigs harboring three PD-casusing mutations (E46K, H50Q and G51D) in SCNA. As they continue to develop, these gene editing minipigs need to be regularly teseted for the presence of PD-like pathological features in order to validate the use of this large-animal model in PD research.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Mutação de Sentido Incorreto/genética , Doença de Parkinson/genética , Porco Miniatura/genética , alfa-Sinucleína/genética , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Substância Negra/metabolismo , Suínos
10.
Reprod Fertil Dev ; 29(12): 2336-2344, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28420479

RESUMO

Andrographolide (AG) is a diterpenoid lactone isolated from the stem and leaves of Andrographis paniculata Nees that is used for the effective treatment of infectious diseases in Asian countries. Previous studies have reported adverse effects of AG on female fertility in rodents; however, the underlying mechanisms are unknown. The aim of the present study was to investigate the effects of AG on the IVM of mouse oocytes and their fertilisation potential. Immature oocytes incubated for 6, 14 or 24h in medium containing 5, 10 or 20µM AG showed time- and dose-dependent decreases in maturation rates compared with the control group. Immunostaining revealed that AG exposure disrupted spindle organisation and migration, as well as actin cap formation and cytokinesis. Furthermore, most oocytes exposed to 20µM AG underwent apoptosis, and the few oocytes exposed to 5 or 10µM AG that reached MII exhibited lower fertilisation rates after intracytoplasmic sperm injection. The findings of the present study suggest that AG may disrupt mouse oocyte meiotic maturation by blocking cytoskeletal reorganisation, and may thus have an adverse effect on female fertility.


Assuntos
Citoesqueleto/efeitos dos fármacos , Diterpenos/administração & dosagem , Fertilização/efeitos dos fármacos , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Feminino , Fertilização/fisiologia , Meiose/fisiologia , Camundongos , Oócitos/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo
11.
3 Biotech ; 6(2): 218, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28330290

RESUMO

Somatic cloning, also known as somatic cell nuclear transfer (SCNT), is a promising technology which has been expected to rapidly extend the population of elaborately selected breeding boars with superior production performance. Chinese Guike No. 1 pig breed is a novel swine specialized strain incorporated with the pedigree background of Duroc and Chinese Luchuan pig breeds, thus inherits an excellent production performance. The present study was conducted to establish somatic cloning procedures of adult breeding boars from the Chinese Guike No. 1 specialized strain. Ear skin fibroblasts were first isolated from a three-year-old Chinese Guike No. 1 breeding boar, and following that, used as donor cell to produce nuclear transfer embryos. Such cloned embryos showed full in vitro development and with the blastocyst formation rate of 18.4 % (37/201, three independent replicates). Finally, after transferring of 1187 nuclear transfer derived embryos to four surrogate recipients, six live piglets with normal health and development were produced. The overall cloning efficiency was 0.5 % and the clonal provenance of such SCNT derived piglets was confirmed by DNA microsatellite analysis. All of the cloned piglets were clinically healthy and had a normal weight at 1 month of age. Collectively, the first successful cloning of an adult Chinese Guike No. 1 breeding boar may lay the foundation for future improving the pig production industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...