Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400629, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982718

RESUMO

Electrode materials are essential in the electrochemical process of storing charge in supercapacitors and have a significant impact on the cost and capacitive performance of the final product. Hence, it is imperative to make precise predictions regarding the capacitance of electrode materials in order to further the development of supercapacitors. MgCo2O4, with a theoretical capacitance of up to 3122 F g-1, holds immense research value as an electrode material. The objective of this study is to predict the capacitance of MgCo2O4 with high accuracy. This will be achieved by extracting numerous data from published papers and using some parameters as input features. The Recursive Feature Elimination (RFE) method was employed, using Random Forest (RF), Extreme Gradient Boosting (XGBoost) and Regression Tree (RT) as selectors to identify the optimal feature subset. Then, combining them with these three regression models to construct nine machine learning (ML) models. After performance evaluation and outlier analysis, the XGB-RFE-XGB model achieved R-squared (R²), root mean squared error (RMSE), and mean absolute error (MAE) of 0.95, 111.83 F g-1 and 68.25 F g-1, respectively, demonstrating its stability and reliability. Therefore, the XGB-RFE-XGB model can be used as a reliable predictive tool in subsequent experimental designs.

2.
Heliyon ; 10(12): e32997, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994118

RESUMO

Background: Follicular dendritic cell sarcoma (FDCS) represents an exceedingly rare malignant neoplasm. Inflammatory pseudotumor-like follicular dendritic cell sarcoma (IPT-like FDCS) is recognized as a variant manifestation of FDCS. The clinical incidence of this particular disease is remarkably low, resulting in the absence of established standardized clinical protocols for its management and treatment. Methods: Presented here is a case of primary Epstein-Barr virus (EBV)-positive splenic IPT-like FDCS, noteworthy for manifesting thrombocytopenia as its initial symptom. Our study analyzed the clinicopathologic characteristics of this case and 29 previously reported cases identified in the literature. Also, we conducted a comprehensive review of pertinent literature. Results: We administered splenectomy to this patient and verified the diagnosis of EBV-positive IPT-like FDCS through immunohistochemical examination. Postoperatively, the patient underwent a one-year follow-up period, demonstrating no signs of recurrence. Analyzing a total of 30 cases revealed that this disease is more prevalent in female patients (F:M = 1.14:1), with a median age of 62 years. Fifteen patients were asymptomatic, and nine patients presented with abdominal discomfort or pain. All patients underwent surgical treatment. Among the cases, histopathological and immunohistochemical information was unavailable for five; however, in the remaining 25 cases, histopathology revealed a distinct inflammatory cell infiltration and spindle tumor cells arranged in sheets or fascicles. These tumor cells had vesicular chromatin and distinct nucleoli and they expressed conventional FDC markers. In situ hybridization analysis of Epstein-Barr virus-encoded small RNA (EBER) showed that all 30 cases were EBV-positive. Follow-up information showed that no patients relapsed and one (3.8 %) patient died. Conclusion: The clinical diagnosis of EBV-positive IPT-like FDCS poses considerable challenges, necessitating a conclusive diagnosis through pathological immunohistochemical examination. EBER in situ hybridization holds significance for the definitive diagnosis of the disease. We advocate for splenectomy as the treatment of choice for limited splenic IPT-like FDCS.

3.
Angew Chem Int Ed Engl ; 63(34): e202406214, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38825853

RESUMO

Crystal polymorphism, characterized by different packing arrangements of the same compound, strongly ties to the physical properties of a molecule. Determining the polymorphic landscape is complex and time-consuming, with the number of experimentally observed polymorphs varying widely from molecule to molecule. Furthermore, disappearing polymorphs, the phenomenon whereby experimentally observed forms cannot be reproduced, pose a significant challenge for the pharmaceutical industry. Herein, we focused on oxindole (OX), a small rigid molecule with four known polymorphs, including a reported disappearing form. Using crystal structure prediction (CSP), we assessed OX solid-state landscape and thermodynamic stability by comparing predicted structures with experimentally known forms. We then performed melt and solution crystallization in bulk and nanoconfinement to validate our predictions. These experiments successfully reproduced the known forms and led to the discovery of four novel polymorphs. Our approach provided insights into reconstructing disappearing polymorphs and building more comprehensive polymorph landscapes. These results also establish a new record of packing polymorphism for rigid molecules.

4.
Molecules ; 29(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611742

RESUMO

Tumor vaccines have been considered a promising therapeutic approach for treating cancer in recent years. With the development of sequencing technologies, tumor vaccines based on neoantigens or genomes specifically expressed in tumor cells, mainly in the form of peptides, nucleic acids, and dendritic cells, are beginning to receive widespread attention. Therefore, in this review, we have introduced different forms of neoantigen vaccines and discussed the development of these vaccines in treating cancer. Furthermore, neoantigen vaccines are influenced by factors such as antigen stability, weak immunogenicity, and biosafety in addition to sequencing technology. Hence, the biological nanomaterials, polymeric nanomaterials, inorganic nanomaterials, etc., used as vaccine carriers are principally summarized here, which may contribute to the design of neoantigen vaccines for improved stability and better efficacy.


Assuntos
Vacinas Anticâncer , Nanoestruturas , Neoplasias , Ácidos Nucleicos , Humanos , Vacinas Anticâncer/uso terapêutico , Medicina de Precisão , Nanoestruturas/uso terapêutico , Neoplasias/terapia
5.
Mol Pharm ; 21(4): 1933-1941, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502549

RESUMO

Islatravir, a highly potent nucleoside reverse transcriptase translocation inhibitor (NRTTI) for the treatment of HIV, has great potential to be formulated as ethylene-vinyl acetate (EVA) copolymer-based implants via hot melt extrusion. The crystallinity of EVA determines its physical and rheological properties and may impact the drug-eluting implant performance. Herein, we describe the systematic analysis of factors affecting the EVA crystallinity in islatravir implants. Differential scanning calorimetry (DSC) on EVA and solid-state NMR revealed drug loading promoted EVA crystallization, whereas BaSO4 loading had negligible impact on EVA crystallinity. The sterilization through γ-irradiation appeared to significantly impact the EVA crystallinity and surface characteristics of the implants. Furthermore, DSC analysis of thin implant slices prepared with an ultramicrotome indicated that the surface layer of the implant was more crystalline than the core. These findings provide critical insights into factors affecting the crystallinity, mechanical properties, and physicochemical properties of the EVA polymer matrix of extruded islatravir implants.


Assuntos
Desoxiadenosinas , Etilenos , Polivinil , Compostos de Vinila , Polivinil/química
6.
Polymers (Basel) ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543336

RESUMO

Hydroxyapatite/polycaprolactone (HA/PCL) composites have been extensively explored in laser powder bed fusion (L-PBF) for bone tissue engineering. However, conventional mechanical mixing methods for preparing composite powders often yield inhomogeneous compositions and suboptimal flowability. In this study, HA/PCL powders were prepared and optimized for L-PBF using the modified emulsion solvent evaporation method. The morphology, flowability and thermal and rheological properties of the powders were systematically investigated, along with the mechanical and biological properties of the fabricated specimens. The HA/PCL powders exhibited spherical morphologies with a homogeneous distribution of HA within the particles. The addition of small amounts of HA (5 wt% and 10 wt%) enhanced the processability and increased the maximum values of the elastic modulus and yield strength of the specimens from 129.8 MPa to 166.2 MPa and 20.2 MPa to 25.1 MPa, respectively, while also improving their biocompatibility. However, excessive addition resulted in compromised sinterability, thereby affecting both mechanical and biological properties.

7.
J Am Chem Soc ; 146(9): 6388-6396, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408435

RESUMO

In this work, we develop for the first time a facile chemical lithiation-assisted exfoliation approach to the controllable and scalable preparation of bilayer graphene. Biphenyl lithium (Bp-Li), a strong reducing reagent, is selected to realize the spontaneous Li-intercalation into graphite at ambient temperature, forming lithium graphite intercalation compounds (Li-GICs). The potential of Bp-Li (0.11 V vs Li/Li+), which is just lower than the potential of stage-2 lithium intercalation (0.125 V), enables the precise lithiation of graphite to stage-2 Li-GICs (LiC12). Intriguingly, the exfoliation of LiC12 leads to the bilayer-favored production of graphene, giving a high selectivity of 78%. Furthermore, the mild intercalation-exfoliation procedure yields high-quality graphene with negligible structural deterioration. The obtained graphene exhibits ultralow defect density (ID/IG ∼ 0.14) and a considerably high C/O ratio (∼29.7), superior to most current state-of-the-art techniques. This simple and scalable strategy promotes the understanding of chemical Li-intercalation methods for preparing high-quality graphene and shows great potential for layer-controlled engineering.

8.
J Funct Biomater ; 15(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391890

RESUMO

Since chondrocytes are highly vulnerable to oxidative stress, an anti-oxidative bioink combined with 3D bioprinting may facilitate its applications in cartilage tissue engineering. We developed an anti-oxidative bioink with methacrylate-modified rutin (RTMA) as an additional bioactive component and glycidyl methacrylate silk fibroin as a biomaterial component. Bioink containing 0% RTMA was used as the control sample. Compared with hydrogel samples produced with the control bioink, solidified anti-oxidative bioinks displayed a similar porous microstructure, which is suitable for cell adhesion and migration, and the transportation of nutrients and wastes. Among photo-cured samples prepared with anti-oxidative bioinks and the control bioink, the sample containing 1 mg/mL of RTMA (RTMA-1) showed good degradation, promising mechanical properties, and the best cytocompatibility, and it was selected for further investigation. Based on the results of 3D bioprinting tests, the RTMA-1 bioink exhibited good printability and high shape fidelity. The results demonstrated that RTMA-1 reduced intracellular oxidative stress in encapsulated chondrocytes under H2O2 stimulation, which results from upregulation of COLII and AGG and downregulation of MMP13 and MMP1. By using in vitro and in vivo tests, our data suggest that the RTMA-1 bioink significantly enhanced the regeneration and maturation of cartilage tissue compared to the control bioink, indicating that this anti-oxidative bioink can be used for 3D bioprinting and cartilage tissue engineering applications in the future.

9.
Circ Res ; 134(2): 203-222, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38166414

RESUMO

BACKGROUND: Angiogenesis, which plays a critical role in embryonic development and tissue repair, is controlled by a set of angiogenic signaling pathways. As a TF (transcription factor) belonging to the basic helix-loop-helix family, HEY (hairy/enhancer of split related with YRPW motif)-1 (YRPW motif, abbreviation of 4 highly conserved amino acids in the motif) has been identified as a key player in developmental angiogenesis. However, the precise mechanisms underlying HEY1's actions in angiogenesis remain largely unknown. Our previous studies have suggested a potential role for posttranslational SUMOylation in the dynamic regulation of vascular development and organization. METHODS: Immunoprecipitation, mass spectrometry, and bioinformatics analysis were used to determine the biochemical characteristics of HEY1 SUMOylation. The promoter-binding capability of HEY1 was determined by chromatin immunoprecipitation, dual luciferase, and electrophoretic mobility shift assays. The dimerization pattern of HEY1 was determined by coimmunoprecipitation. The angiogenic capabilities of endothelial cells were assessed by CCK-8 (cell counting kit-8), 5-ethynyl-2-deoxyuridine staining, wound healing, transwell, and sprouting assays. Embryonic and postnatal vascular growth in mouse tissues, matrigel plug assay, cutaneous wound healing model, oxygen-induced retinopathy model, and tumor angiogenesis model were used to investigate the angiogenesis in vivo. RESULTS: We identified intrinsic endothelial HEY1 SUMOylation at conserved lysines by TRIM28 (tripartite motif containing 28) as the unique E3 ligase. Functionally, SUMOylation facilitated HEY1-mediated suppression of angiogenic RTK (receptor tyrosine kinase) signaling and angiogenesis in primary human endothelial cells and mice with endothelial cell-specific expression of wild-type HEY1 or a SUMOylation-deficient HEY1 mutant. Mechanistically, SUMOylation facilitates HEY1 homodimer formation, which in turn preserves HEY1's DNA-binding capability via recognition of E-box promoter elements. Therefore, SUMOylation maintains HEY1's function as a repressive TF controlling numerous angiogenic genes, including RTKs and Notch pathway components. Proangiogenic stimuli induce HEY1 deSUMOylation, leading to heterodimerization of HEY1 with HES (hairy and enhancer of split)-1, which results in ineffective DNA binding and loss of HEY1's angiogenesis-suppressive activity. CONCLUSIONS: Our findings demonstrate that reversible HEY1 SUMOylation is a molecular mechanism that coordinates endothelial angiogenic signaling and angiogenesis, both in physiological and pathological milieus, by fine-tuning the transcriptional activity of HEY1. Specifically, SUMOylation facilitates the formation of the HEY1 transcriptional complex and enhances its DNA-binding capability in endothelial cells.


Assuntos
Células Endoteliais , Sumoilação , Animais , Humanos , Camundongos , Angiogênese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Células Endoteliais/metabolismo
10.
ACS Nano ; 18(4): 2782-2799, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38232382

RESUMO

Immune regulation therapies are considered promising for treating classically activated macrophage (M1)-driven viral myocarditis (VM). Alternatively, activated macrophage (M2)-derived extracellular vesicles (M2 EVs) have great immunomodulatory potential owing to their ability to reprogram macrophages, but their therapeutic efficacy is hampered by insufficient targeting capacity in vivo. Therefore, we developed cardiac-targeting peptide (CTP) and platelet membrane (PM)-engineered M2 EVs enriched with viral macrophage inflammatory protein-II (vMIP-II), termed CTP/PM-M2 EVsvMIP-II-Lamp2b, to improve the delivery of EVs "cargo" to the heart tissues. In a mouse model of VM, the intravenously injected CTP/PM-M2 EVsvMIP-II-Lamp2b could be carried into the myocardium via CTP, PM, and vMIP-II. In the inflammatory microenvironment, macrophages differentiated from circulating monocytes and macrophages residing in the heart showed enhanced endocytosis rates for CTP/PM-M2 EVsvMIP-II-Lamp2b. Subsequently, CTP/PM-M2 EVsvMIP-II-Lamp2b successfully released functional M2 EVsvMIP-II-Lamp2b into the cytosol, which facilitated the reprogramming of inflammatory M1 macrophages to reparative M2 macrophages. vMIP-II not only helps to increase the targeting ability of M2 EVs but also collaborates with M2 EVs to regulate M1 macrophages in the inflammatory microenvironment and downregulate the levels of multiple chemokine receptors. Finally, the cardiac immune microenvironment was protectively regulated to achieve cardiac repair. Taken together, our findings suggest that CTP-and-PM-engineered M2 EVsvMIP-II-Lamp2b represent an effective means for treating VM and show promise for clinical applications.


Assuntos
Vesículas Extracelulares , Miocardite , Camundongos , Animais , Miocardite/tratamento farmacológico , Macrófagos , Monócitos , Fagocitose
11.
Redox Biol ; 69: 103016, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160539

RESUMO

Viral myocarditis (VM) is a clinically common inflammatory disease. Accumulating literature has indicated that M2 macrophages protect mice from Coxsackievirus B3 (CVB3)-induced VM. However, mechanisms that underlie M2 macrophages alleviating myocardial inflammation remain largely undefined. We found that M2 macrophage-derived exosomes (M2-Exo) can effectively attenuate VM. The long non-coding RNA (lncRNA) AK083884 in M2-Exo was found to be involved in the regulation of macrophage polarization by exosome lncRNA sequencing combined with in vitro functional assays. M2-Exo-derived AK083884 promotes macrophage M2 polarization and protects mice from CVB3-induced VM. Furthermore, we identified pyruvate kinase M2 (PKM2) as a protein target binding to AK083884 and found that PKM2 knockdown could promote macrophages to polarize to M2 phenotype. Intriguingly, functional assay revealed that downregulation of AK083884 promotes metabolic reprogramming in macrophages. In addition, co-immunoprecipitation was performed to reveal AK083884 could interact with PKM2 and inhibition of AK083884 can facilitate the binding of PKM2 and HIF-1α. Collectively, our findings uncovered an important role of M2-Exo-derived AK083884 in the regulation of macrophage polarization through metabolic reprogramming, identified a new participant in the development of VM and provided a potential clinically important therapeutic target.


Assuntos
Exossomos , Miocardite , RNA Longo não Codificante , Viroses , Animais , Humanos , Camundongos , Exossomos/metabolismo , Macrófagos/metabolismo , Reprogramação Metabólica , Miocardite/metabolismo , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA