Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 17(8): 1289-1306, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39003499

RESUMO

Monocarpic senescence, characterized by whole-plant senescence following a single flowering phase, is widespread in seed plants, particularly in crops, determining seed harvest time and quality. However, how external and internal signals are systemically integrated into monocarpic senescence remains largely unknown. Here, we report that the Arabidopsis thaliana transcription factor WRKY1 plays essential roles in multiple key steps of monocarpic senescence. WRKY1 expression is induced by age, salicylic acid (SA), and nitrogen (N) deficiency. Flowering and leaf senescence are accelerated in the WRKY1 overexpression lines but are delayed in the wrky1 mutants. The combined DNA affinity purification sequencing and RNA sequencing analyses uncover the direct target genes of WRKY1. Further studies show that WRKY1 coordinately regulates three processes in monocarpic senescence: (1) suppressing FLOWERING LOCUS C gene expression to initiate flowering, (2) inducing SA biosynthesis genes to promote leaf senescence, and (3) activating the N assimilation and transport genes to trigger N remobilization. In summary, our study reveals how one stress-responsive transcription factor, WRKY1, integrates flowering, leaf senescence, and N remobilization processes into monocarpic senescence, providing important insights into plant lifetime regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Nitrogênio , Folhas de Planta , Senescência Vegetal , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Flores/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/genética , Nitrogênio/metabolismo , Senescência Vegetal/genética , Ácido Salicílico/metabolismo
2.
Plant Physiol ; 195(1): 671-684, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38345859

RESUMO

The phytohormone abscisic acid (ABA) plays a central role in regulating stomatal movements under drought conditions. The root-derived peptide CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 25 (CLE25) moves from the root to shoot for activating ABA biosynthesis under drought conditions. However, the root-to-shoot translocation of root-derived ABA and its regulation of stomatal movements in the shoot remain to be clarified. Here, we reveal that the ABA transporter ATP-binding cassette subfamily G member 25 (AtABCG25) mediates root-to-shoot translocation of ABA and ABA-glucosyl ester (ABA-GE) in Arabidopsis (Arabidopsis thaliana). Isotope-labeled ABA tracer experiments and hormone quantification in xylem sap showed that the root-to-shoot translocation of ABA and ABA-GE was substantially impaired in the atabcg25 mutant under nondrought and drought conditions. However, the contents of ABA and ABA-GE in the leaves were lower in the atabcg25 mutant than in the wild type (WT) under nondrought but similar under drought conditions. Consistently, the stomatal closure was suppressed in the atabcg25 mutant under nondrought but not under drought conditions. The transporter activity assays showed that AtABCG25 directly exported ABA and ABA-GE in planta and in yeast (Saccharomyces cerevisiae) cells. Thus, we proposed a working model in which root-derived ABA transported by AtABCG25 via xylem mediates stomatal movements in the shoot under nondrought conditions but might exhibit little effect on stomatal movements under drought conditions. These findings extend the functions of AtABCG25 and provide insights into the long-distance translocation of ABA and its role in stomatal movements.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Raízes de Plantas , Brotos de Planta , Estômatos de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácido Abscísico/metabolismo , Estômatos de Plantas/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/metabolismo , Brotos de Planta/genética , Transporte Biológico , Secas , Mutação/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Reguladores de Crescimento de Plantas/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA