Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Allergy ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370939

RESUMO

The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.

2.
Int J Biol Macromol ; 280(Pt 3): 135810, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39322137

RESUMO

rAzoR2326, an azoreductase derived from Roseibium sp. H3510, functions as an FMN-dependent homodimer utilizing NADH as cofactor. It demonstrated maximum activity at 45 °C and retained moderate activity above 50 °C, exhibiting stability from pH 7-10. Evolution and structure guided rational design of wild-type rAzoR2326 (WT) efficiently yielded 6 single-point mutants with improved thermostability and activity from a 22-variant library. Further combinatorial mutation led to mutant M20 with substantially enhanced thermostability (15-fold longer half-life at 50 °C) and activity (3.24-fold higher kcat/Km). M20 exhibited superior catalytic properties for decolorizing Allura Red compared to WT. Specifically, its decolorization capacity at pH 10.0 was 4.26-fold higher than WT. Additionally, M20 demonstrated remarkable thermostability, retaining 76.83 % decolorization activity for Allura Red after 120 min at 50 °C, whereas WT nearly lost all catalytic activity under the same conditions. Molecular dynamics simulations revealed the structural changes in M20, such as improved hydrogen bonding and a new C-H···π interaction, led to a more compact and rigid enzyme structure. This resulted in a more stable FMN-binding pocket and substrate tunnel, thereby improving the catalytic stability and activity of M20. Given its enhanced dye decolorization ability and alkaline tolerance, M20 shows promise as a biocatalyst for treating azo dye effluents.

3.
Plant Cell Environ ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222055

RESUMO

Pentatricopeptide repeat (PPR) gene family constitutes one of the largest gene families in plants, which mainly participate in RNA editing and RNA splicing of organellar RNAs, thereby affecting the organellar development. Recently, some evidence elucidated the important roles of PPR proteins in the albino process of plant leaves. However, the functions of PPR genes in the woody mangrove species have not been investigated. In this study, using a typical true mangrove Kandelia obovata, we systematically identified 298 PPR genes and characterized their general features and physicochemical properties, including evolutionary relationships, the subcellular localization, PPR motif type, the number of introns and PPR motifs, and isoelectric point, and so forth. Furthermore, we combined genome-wide association studies (GWAS) and transcriptome analysis to identify the genetic architecture and potential PPR genes associated with propagule leaves colour variations of K. obovata. As a result, we prioritized 16 PPR genes related to the albino phenotype using different strategies, including differentially expressed genes analysis and genetic diversity analysis. Further analysis discovered two genes of interest, namely Maker00002998 (PLS-type) and Maker00003187 (P-type), which were differentially expressed genes and causal genes detected by GWAS analysis. Moreover, we successfully predicted downstream target chloroplast genes (rps14, rpoC1 and rpoC2) bound by Maker00002998 PPR proteins. The experimental verification of RNA editing sites of rps14, rpoC1, and rpoC2 in our previous study and the verification of interaction between Maker00002998 and rps14 transcript using in vitro RNA pull-down assays revealed that Maker00002998 PPR protein might be involved in the post-transcriptional process of chloroplast genes. Our result provides new insights into the roles of PPR genes in the albinism mechanism of K. obovata propagule leaves.

4.
Tree Physiol ; 44(8)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-38976033

RESUMO

Mangroves perform a crucial ecological role along the tropical and subtropical coastal intertidal zone where salinity fluctuation occurs frequently. However, the differential responses of mangrove plant at the combined transcriptome and metabolome level to variable salinity are not well documented. In this study, we used Avicennia marina (Forssk.) Vierh., a pioneer species of mangrove wetlands and one of the most salt-tolerant mangroves, to investigate the differential salt tolerance mechanisms under low and high salinity using inductively coupled plasma-mass spectrometry, transcriptomic and metabolomic analysis. The results showed that HAK8 was up-regulated and transported K+ into the roots under low salinity. However, under high salinity, AKT1 and NHX2 were strongly induced, which indicated the transport of K+ and Na+ compartmentalization to maintain ion homeostasis. In addition, A. marina tolerates low salinity by up-regulating ABA signaling pathway and accumulating more mannitol, unsaturated fatty acids, amino acids' and L-ascorbic acid in the roots. Under high salinity, A. marina undergoes a more drastic metabolic network rearrangement in the roots, such as more L-ascorbic acid and oxiglutatione were up-regulated, while carbohydrates, lipids and amino acids were down-regulated in the roots, and, finally, glycolysis and TCA cycle were promoted to provide more energy to improve salt tolerance. Our findings suggest that the major salt tolerance traits in A. marina can be attributed to complex regulatory and signaling mechanisms, and show significant differences between low and high salinity.


Assuntos
Avicennia , Metaboloma , Raízes de Plantas , Salinidade , Tolerância ao Sal , Plantas Tolerantes a Sal , Transcriptoma , Avicennia/genética , Avicennia/fisiologia , Avicennia/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas
5.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37769324

RESUMO

Salt secretion is an important strategy used by the mangrove plant Aegiceras corniculatum to adapt to the coastal intertidal environment. However, the structural, developmental and functional analyses on the leaf salt glands, particularly the salt secretion mechanism, are not well documented. In this study, we investigated the structural, developmental and degenerative characteristics and the salt secretion mechanisms of salt glands to further elucidate the mechanisms of salt tolerance of A. corniculatum. The results showed that the salt gland cells have a large number of mitochondria and vesicles, and plenty of plasmodesmata as well, while chloroplasts were found in the collecting cells. The salt glands developed early and began to differentiate at the leaf primordium stage. We observed and defined three stages of salt gland degradation for the first time in A. corniculatum, where the secretory cells gradually twisted and wrinkled inward and collapsed downward as the salt gland degeneration increased and the intensity of salt gland autofluorescence gradually diminished. In addition, we found that the salt secretion rate of the salt glands increased when the treated concentration of NaCl increased, reaching the maximum at 400 mM NaCl. The salt-secreting capacity of the salt glands of the adaxial epidermis is significantly greater than that of the abaxial epidermis. The real-time quantitative PCR results indicate that SAD2, TTG1, GL2 and RBR1 may be involved in regulating the development of the salt glands of A. corniculatum. Moreover, Na+/H+ antiporter, H+-ATPase, K+ channel and Cl- channel may play important roles in the salt secretion of salt glands. In sum mary, this study strengthens the understanding of the structural, developmental and degenerative patterns of salt glands and salt secretion mechanisms in mangrove recretohalophyte A. corniculatum, providing an important reference for further studies at the molecular level.


Assuntos
Primulaceae , Glândula de Sal , Meio Ambiente , Folhas de Planta/metabolismo , Primulaceae/fisiologia , Cloreto de Sódio/metabolismo
6.
Planta ; 259(1): 12, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057597

RESUMO

MAIN CONCLUSION: Transcriptional and metabolic regulation of lignin biosynthesis and lignification plays crucial roles in Avicennia marina pneumatophore development, facilitating its adaptation to coastal habitats. Avicennia marina is a pioneer mangrove species in coastal wetland. To cope with the periodic intertidal flooding and hypoxia environment, this species has developed a complex and extensive root system, with its most unique feature being a pneumatophore with a distinct above- and below-ground morphology and vascular structure. However, the characteristics of pneumatophore lignification remain unknown. Studies comparing the anatomy among above-ground pneumatophore, below-ground pneumatophore, and feeding root have suggested that vascular structure development in the pneumatophore is more like the development of a stem than of a root. Metabolome and transcriptome analysis illustrated that the accumulation of syringyl (S) and guaiacyl (G) units in the pneumatophore plays a critical role in lignification of the stem-like structure. Fourteen differentially accumulated metabolites (DAMs) and 10 differentially expressed genes involved in the lignin biosynthesis pathway were targeted. To identify genes significantly associated with lignification, we analyzed the correlation between 14 genes and 8 metabolites and further built a co-expression network between 10 transcription factors (TFs), including 5 for each of MYB and NAC, and 23 enzyme-coding genes involved in lignin biosynthesis. 4-Coumarate-CoA ligase, shikimate/quinate hydroxycinnamoyl transferase, cinnamyl alcohol dehydrogenase, caffeic acid 3-O-methyltransferase, phenylalanine ammonia-lyase, and peroxidase were identified to be strongly correlated with these TFs. Finally, we examined 9 key candidate genes through quantitative real-time PCR to validate the reliability of transcriptome data. Together, our metabolome and transcriptome findings reveal that lignin biosynthesis and lignification regulate pneumatophore development in the mangrove species A. marina and facilitate its adaptation to coastal habitats.


Assuntos
Avicennia , Avicennia/genética , Avicennia/metabolismo , Lignina/metabolismo , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Transcriptoma/genética , Metaboloma
7.
Planta ; 258(5): 100, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839056

RESUMO

MAIN CONCLUSION: Auto-fluorescent condensed tannins specifically accumulated in mesophyll cells of non-salt secretor mangroves are involved in the compartmentation of Na+ and osmotic regulation, contributing to their salt tolerance. Salinity is a major abiotic stress affecting the distribution and growth of mangrove plants. The salt exclusion mechanism from salt secretor mangrove leaves is quite known; however, salt management strategies in non-salt secretor leaves remain unclear. In this study, we reported the auto-fluorescent inclusions (AFIs) specifically accumulated in mesophyll cells (MCs) of four non-salt secretor mangroves but absent in three salt secretors. The AFIs increased with the leaf development under natural condition, and applied NaCl concentrations applied in the lab. The AFIs in MCs were isolated and identified as condensed tannin accretions (CTAs) using the dye dimethyl-amino-cinnamaldehyde (DMACA), specific for condensed tannin (CT), both in situ leaf cross sections and in the purified AFIs. Fluorescence microscopy and transmission electron microscope (TEM) analysis indicated that the CTAs originated from the inflated chloroplasts. The CTAs had an obvious membrane and could induce changes in shape and fluorescence intensity in hypotonic and hypertonic NaCl solutions, suggesting CTAs might have osmotic regulation ability and play an important role in the osmotic regulation in MCs. The purified CTAs were labeled by the fluorescent sodium-binding benzofuran isophthalate acetoxymethyl ester (SBFI-AM), confirming they were involved in the compartmentation of excess Na+ in MCs. This study provided a new view on the salt resistance-associated strategies in mangroves.


Assuntos
Células do Mesofilo , Proantocianidinas , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Folhas de Planta/fisiologia , Salinidade
8.
J Hazard Mater ; 459: 132321, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37597395

RESUMO

Mangrove Avicennia marina has the importantly potential for cadmium (Cd) pollution remediation in coastal wetlands. Unfortunately, the molecular mechanisms and transporter members for Cd uptake by the roots of A. marina are not well documented. In this study, photosynthetic and phenotypic analysis indicated that A. marina is particularly tolerant to Cd. The content and flux analysis indicated that Cd is mainly retained in the roots, with greater Cd influx in fine roots than that in coarse roots, and higher Cd influx in the root meristem zone as well. Using transcriptomic analysis, a total of 5238 differentially expressed genes were identified between the Cd treatment and control group. Moreover, we found that 54 genes were responsible for inorganic ion transport. Among these genes, AmHMA2, AmIRT1, and AmPCR2 were localized in the plasma membrane and AmZIP1 was localized in both plasma membrane and cytoplasm. All above gene encoding transporters showed significant Cd transport activities using function assay in yeast cells. In addition, the overexpression of AmZIP1 or AmPCR2 in Arabidopsis improved the Cd tolerance of transgenic plants. This is particularly significant as it provides insight into the molecular mechanism for Cd uptake by the roots of mangrove plants and a theoretical basis for coastal wetland phytoremediation.


Assuntos
Arabidopsis , Avicennia , Fabaceae , Avicennia/genética , Cádmio/toxicidade , Proteínas de Membrana Transportadoras , Transporte Biológico , Áreas Alagadas
9.
Langmuir ; 39(32): 11406-11413, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37542713

RESUMO

Nonspecific adsorption (NSA) seems to be an impregnable obstacle to the progress of the biomedical, diagnostic, microelectronic, and material fields. The reaction path of bioconjugation can alter the surface charge distribution on products and the interaction of bioconjugates, an ignored factor causing NSA. We monitored exacerbated NSA introduced by a 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC) addition reaction, which cannot be resistant to bovine serum albumin (BSA) or polyethylene glycol (PEG) antifouling coating and Tween-20. And the negative effects can be minimized by adding as low as 7.5 × 10-6 M N-hydroxysulfosuccinimide (sulfo-NHS). We applied ordered porous layer interferometry (OPLI) to sensitively evaluate the NSA that is difficult to measure on individual particles. Using the silica colloidal crystal (SCC) film with Fabry-Perot fringes as in situ and real-time monitoring for the NSA, we optimized the surface chemistry to yield a conjugate surface without variational charge distribution. In this work, we propose a novel approach from the perspective of the reaction pathway to minimize the NSA of solely EDC-induced chemistry.

10.
Phytomedicine ; 118: 154941, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451150

RESUMO

BACKGROUND: Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airflow limitation, airway inflammation and remodeling. Icariside II (IS), derived from herbal medicine Herba Epimedii, exerts an anti-inflammatory property. However, underlying mechanisms with specifically targeted molecular expression by IS in asthma have not been fully understood, and whether IS could inhibit remodeling and EMT still remains unclear. PURPOSE: The study aimed to clarify therapeutic efficacy of IS for attenuating airway inflammation and remodeling in asthma, and illustrate IS-regulated specific pathway and target proteins through TMT-based quantitative proteomics. STUDY DESIGN AND METHODS: Murine model of chronic asthma was constructed with ovalbumin (OVA) sensitization and then challenge for 8 weeks. Pulmonary function, leukocyte count in bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory and fibrotic cytokines, and markers of epithelial-mesenchymal transition (EMT) were evaluated. TMT-based quantitative proteomics were performed on lung tissues to explore IS-regulated proteins. RESULTS: IS contributed to alleviative airway hyperresponsiveness (AHR) evidenced by declined RL and increased Cdyn. After IS treatment, we observed a remarked down-regulation of leukocyte count, inflammatory cytokines in BALF, and peribronchial inflammation infiltration. Goblet cell hyperplasia, mucus secretion and peribronchial collagen deposition were attenuated, with the level of TGF-ß and MMP-9 in BALF declined. Furthermore, IS induced a rise of Occludin and E-cadherin and a decline of N-cadherin and α-SMA in lung tissues. These results proved the protective property of IS against airway inflammation, remodeling and EMT. To further investigate underlying mechanisms of IS in asthma treatment, TMT-based quantitative proteomics were performed and 102 overlapped DEPs regulated by IS were identified. KEGG enrichment exhibited these DEPs were enriched in lysosome, phagosome and autophagy, in which LAMP2, CTSD and CTSS were common DEPs. WB, q-PCR and IHC results proofed expressional alteration of these proteins. Besides, IS could decrease Beclin-1 and LC3B expression with increasing p62 expression thus inhibiting autophagy. CONCLUSIONS: The study demonstrated IS could ameliorate AHR, airway inflammation, remodeling and EMT in OVA-induced chronic asthma mice. Our research was the first to reveal that inhibition of LAMP2, CTSD and CTSS expression in autophagy contributed to the therapeutic efficacy of IS to asthma.


Assuntos
Asma , Proteômica , Camundongos , Animais , Ovalbumina , Asma/tratamento farmacológico , Asma/metabolismo , Pulmão/patologia , Inflamação/metabolismo , Líquido da Lavagem Broncoalveolar , Citocinas , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
11.
Asia Pac Allergy ; 13(1): 28-39, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37389096

RESUMO

It is now longer than half a century, humans, animals, and nature of the world are under the influence of exposure to many newly introduced noxious substances. These exposures are nowadays pushing the borders to be considered as the causative or exacerbating factors for many chronic disorders including allergic, autoimmune/inflammatory, and metabolic diseases. The epithelial linings serve as the outermost body's primary physical, chemical, and immunological barriers against external stimuli. The "epithelial barrier theory" hypothesizes that these diseases are aggravated by an ongoing periepithelial inflammation triggered by exposure to a wide range of epithelial barrier-damaging insults that lead to "epithelitis" and the release of alarmins. A leaky epithelial barrier enables the microbiome's translocation from the periphery to interepithelial and even deeper subepithelial areas together with allergens, toxins, and pollutants. Thereafter, microbial dysbiosis, characterized by colonization of opportunistic pathogen bacteria and loss of the number and biodiversity of commensal bacteria take place. Local inflammation, impaired tissue regeneration, and remodeling characterize the disease. The infiltration of inflammatory cells to affected tissues shows an effort to expulse the tissue invading bacteria, allergens, toxins, and pollutants away from the deep tissues to the surface, representing the "expulsion response." Cells that migrate to other organs from the inflammatory foci may play roles in the exacerbation of various inflammatory diseases in distant organs. The purpose of this review is to highlight and appraise recent opinions and findings on epithelial physiology and its role in the pathogenesis of chronic diseases in view of the epithelial barrier theory.

12.
Analyst ; 148(5): 1024-1031, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36723219

RESUMO

Immobilizing ligands is a crucial part of preparing optical sensors and directly connected to the sensitivity, stability, and other characteristics of sensors. In this work, an ordered porous layer interferometry (OPLI) system that can monitor the covalent coupling process of ligands in real time was developed. Films of silica colloidal crystal (SCC), as optical interference substrates, were surface modified by three different reagents: chloroacetic acid, glutaric anhydride, and carboxymethyl dextran. Staphylococcus aureus protein A (SPA), the ligand, was immobilized on SCC films. The covalent coupling process of SPA and SCC films can be dynamically monitored by the OPLI system. In addition, the three different strategies were evaluated by comparing the efficiency of the sensors prepared by different methods for binding Immunoglobulin G (IgG). The glutaric anhydride-modified sensor offers apparent advantages in terms of bound IgG quantity and affinity. This system provides a simple and intuitive way to determine the efficiency of different covalent coupling strategies. Furthermore, the sensor covalently coupled with SPA also excels in the determination of IgG content in complex systems such as milk. At the same time, the covalent coupling gives the sensor the ability to be stored stably over time.

13.
J Hazard Mater ; 448: 130880, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736216

RESUMO

Cadmium (Cd) contamination is becoming a widespread environmental problem. However, the differential responsive mechanisms of Cd hyperaccumulator Solanum nigrum to low or high dose of Cd are not well documented. In this study, phenotypic and physiological analysis firstly suggested that the seedlings of S. nigrum showed slight leaf chlorosis symptoms under 25 µM Cd and severe inhibition on growth and photosynthesis under 100 µM Cd. Further proteomic analysis identified 105 differentially expressed proteins (DEPs) in the Cd-treated leaves. Under low dose of Cd stress, 47 DEPs are mainly involved in primary metabolic processes, while under high dose of Cd stress, 92 DEPs are mainly involved in photosynthesis, energy metabolism, production of phytochelatin and reactive oxygen species (ROS). Protein-protein interaction (PPI) network analysis of DEPs support above differential responses in the leaves of S. nigrum to low and high dose of Cd treatments. This work provides the differential responsive mechanisms in S. nigrum to low and high dose of Cd, and the theoretical foundation for the application of hyperaccumulating plants in the phytoremediation of Cd-contaminated soils.


Assuntos
Poluentes do Solo , Solanum nigrum , Solanum nigrum/metabolismo , Cádmio/metabolismo , Proteômica , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Biodegradação Ambiental , Solo
14.
Int Immunopharmacol ; 115: 109670, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603356

RESUMO

Acupuncture has been frequently used in China for the treatment asthma for thousands of years. Ferroptosis was recently revealed to be involved in several pathological conditions including asthma. However, the detailed links between ferroptosis and airway inflammation in asthma, as well as the detailed regulation of acupuncture on these disorders remains unclear. Our results demonstrated that the non-haem Fe2+ level increased markedly in the lung tissue of mouse asthma model, and positively correlated with RL and IL-4 level in BALF. Furthermore, lipid peroxidation markers MDA and GSSG increased remarkably in OVA-induced experimental asthma mice. Up-regulation of lipid peroxidation associated proteins ACSL4 and15-LO1 was also observed in OVA-induced experimental asthma mice. To demonstrate the role of ferroptosis in asthma and the effect of acupuncture on these disorders, ferroptosis-induction agent erastin and ferroptosis-inhibition agent fer-1 were used, and our data demonstrated that erastin could augment lung inflammation and lipid peroxidation in OVA induced asthma model. Fer-1 was able to relieve AHR, lung inflammation, non-haem Fe2+ level, lipid peroxidation and ferroptosis related pathway ACSL4-15LO1 in OVA-induced experimental asthma mice. Acupuncture treatment alleviated RL, lung inflammation as well as type 2 cytokines IL-4 and IL-13 levels induced by OVA inhalation. What's more, acupuncture significantly reduced the MDA and GSSG levels, the non-haem Fe2+ level and ACSL4-15-LO1 proteins expression. Acupuncture also relieved erastin-induced exacerbation in lung inflammation and lipid peroxidation in ferroptosis. Acupuncture treatment could relieve ferroptosis related exacerbation in airway inflammation. Our study provided insights into the underlying mechanisms for the protective effects of acupuncture and highlighted a therapeutic potential of acupuncture treatment in the attenuation of lipid peroxidation and ferroptosis in asthma.


Assuntos
Terapia por Acupuntura , Antiasmáticos , Asma , Ferroptose , Pneumonia , Animais , Camundongos , Antiasmáticos/uso terapêutico , Antiasmáticos/farmacologia , Asma/terapia , Asma/tratamento farmacológico , Coenzima A Ligases/metabolismo , Coenzima A Ligases/farmacologia , Modelos Animais de Doenças , Dissulfeto de Glutationa/efeitos adversos , Inflamação , Interleucina-4/farmacologia , Ovalbumina/uso terapêutico , Pneumonia/tratamento farmacológico , Araquidonato 15-Lipoxigenase/metabolismo
15.
Tree Physiol ; 43(5): 817-831, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36611000

RESUMO

Avicennia marina, a mangrove plant growing in coastal wetland habitats, is frequently affected by tidal salinity. To understand its salinity tolerance, the seedlings of A. marina were treated with 0, 200, 400 and 600 mM NaCl. We found the whole-plant dry weight and photosynthetic parameters increased at 200 mM NaCl but decreased over 400 mM NaCl. The maximum quantum yield of primary photochemistry (Fv/Fm) significantly decreased at 600 mM NaCl. Transmission electron microscopy observations showed high salinity caused the reduction in starch grain size, swelling of the thylakoids and separation of the granal stacks, and even destruction of the envelope. In addition, the dense protoplasm and abundant mitochondria in the secretory and stalk cells, and abundant plasmodesmata between salt gland cells were observed in the salt glands of the adaxial epidermis. At all salinities, Na+ content was higher in leaves than in stems and roots; however, Na+ content increased in the roots while it remained at a constant level in the leaves over 400 mM NaCl treatment, due to salt secretion from the salt glands. As a result, salt crystals on the leaf adaxial surface increased with salinity. On the other hand, salt treatment increased Na+ and K+ efflux and decreased H+ efflux from the salt glands by the non-invasive micro-test technology, although Na+ efflux reached the maximum at 400 mM NaCl. Further real-time quantitative PCR analysis indicated that the expression of Na+/H+ antiporter (SOS1 and NHX1), H+-ATPase (AHA1 and VHA-c1) and K+ channel (AKT1, HAK5 and GORK) were up-regulated, and only the only Na+ inward transporter (HKT1) was down-regulated in the salt glands enriched adaxial epidermis of the leaves under 400 mM NaCl treatment. In conclusion, salinity below 200 mM NaCl was beneficial to the growth of A. marina, and below 400 mM, the salt glands could excrete Na+ effectively, thus improving its salt tolerance.


Assuntos
Avicennia , Animais , Tolerância ao Sal , Glândula de Sal/metabolismo , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Homeostase , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
16.
Plant Cell Environ ; 46(5): 1521-1539, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36658747

RESUMO

Hydrogen sulfide (H2 S) is considered to mediate plant growth and development. However, whether H2 S regulates the adaptation of mangrove plant to intertidal flooding habitats is not well understood. In this study, sodium hydrosulfide (NaHS) was used as an H2 S donor to investigate the effect of H2 S on the responses of mangrove plant Avicennia marina to waterlogging. The results showed that 24-h waterlogging increased reactive oxygen species (ROS) and cell death in roots. Excessive mitochondrial ROS accumulation is highly oxidative and leads to mitochondrial structural and functional damage. However, the application of NaHS counteracted the oxidative damage caused by waterlogging. The mitochondrial ROS production was reduced by H2 S through increasing the expressions of the alternative oxidase genes and increasing the proportion of alternative respiratory pathway in the total mitochondrial respiration. Secondly, H2 S enhanced the capacity of the antioxidant system. Meanwhile, H2 S induced Ca2+ influx and activated the expression of intracellular Ca2+ -sensing-related genes. In addition, the alleviating effect of H2 S on waterlogging can be reversed by Ca2+ chelator and Ca2+ channel blockers. In conclusion, this study provides the first evidence to explain the role of H2 S in waterlogging adaptation in mangrove plants from the mitochondrial aspect.


Assuntos
Avicennia , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Cálcio/metabolismo , Avicennia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo
17.
Plant Mol Biol ; 111(4-5): 393-413, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36645624

RESUMO

NAC (NAM, ATAF1/2, CUC2) transcription factors (TFs) constitute a plant-specific gene family. It is reported that NAC TFs play important roles in plant growth and developmental processes and in response to biotic/abiotic stresses. Nevertheless, little information is known about the functional and evolutionary characteristics of NAC TFs in mangrove plants, a group of species adapting coastal intertidal habitats. Thus, we conducted a comprehensive investigation for NAC TFs in Avicennia marina, one pioneer species of mangrove plants. We totally identified 142 NAC TFs from the genome of A. marina. Combined with NAC proteins having been functionally characterized in other organisms, we built a phylogenetic tree to infer the function of NAC TFs in A. marina. Gene structure and motif sequence analyses suggest the sequence conservation and transcription regulatory regions-mediated functional diversity. Whole-genome duplication serves as the driver force to the evolution of NAC gene family. Moreover, two pairs of NAC genes were identified as positively selected genes of which AmNAC010/040 may be imposed on less constraint toward neofunctionalization. Quite a few stress/hormone-related responsive elements were found in promoter regions indicating potential response to various external factors. Transcriptome data revealed some NAC TFs were involved in pneumatophore and leaf salt gland development and response to salt, flooding and Cd stresses. Gene co-expression analysis found a few NAC TFs participates in the special biological processes concerned with adaptation to intertidal environment. In summary, this study provides detailed functional and evolutionary information about NAC gene family in mangrove plant A. marina and new perspective for adaptation to intertidal habitats.


Assuntos
Avicennia , Avicennia/química , Avicennia/genética , Avicennia/metabolismo , Filogenia , Fatores de Transcrição/metabolismo , Genes de Plantas , Ecossistema
18.
Oxid Med Cell Longev ; 2022: 6842530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329800

RESUMO

Background: Cycloastragenol (CAG) has been reported to alleviate airway inflammation in ovalbumin- (OVA-) induced asthmatic mice. However, its specific mechanisms remain unclear. Objective: This study is aimed at investigating the effects of CAG on asthma, comparing its efficacy with dexamethasone (DEX), and elucidating the mechanism of CAG's regulation. Methods: The asthma mouse model was induced by OVA. CAG at the optimal dose of 125 mg/kg was given every day from day 0 for 20-day prevention or from day 14 for a 7-day treatment. We observed the preventive and therapeutic effects of CAG in asthmatic mice by evaluating the airway inflammation, AHR, and mucus secretion. Lung proteins were used for TMT-based quantitative proteomic analysis to enunciate its regulatory mechanisms. Results: The early administration of 125 mg/kg CAG before asthma happened prevented asthmatic mice from AHR, airway inflammation, and mucus hypersecretion, returning to nearly the original baseline. Alternatively, the administration of CAG during asthma also had the same therapeutic effects as DEX. The proteomic analysis revealed that the therapeutical effects of CAG were associated with 248 differentially expressed proteins and 3 enriched KEGG pathways. We then focused on 3 differentially expressed proteins (ITGAL, Syk, and Vav1) and demonstrated that CAG treatment downregulated ITGAL, Syk, and Vav1 by quantitative real-time PCR, western blot analysis, and immunohistochemical staining. Conclusion: These findings suggest that CAG exerts preventive and protective effects on asthma by inhibiting ITGAL, Syk, and the downstream target Vav1.


Assuntos
Asma , Proteômica , Camundongos , Animais , Ovalbumina/farmacologia , Regulação para Baixo , Camundongos Endogâmicos BALB C , Líquido da Lavagem Broncoalveolar , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/metabolismo , Pulmão/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças , Citocinas/metabolismo
19.
Anal Chim Acta ; 1236: 340582, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36396235

RESUMO

The hydrogels, because of their swelling properties in response to the environmental stimulus, are being widely considered for the design of controlled drug release systems. To meet the need for developing effective drug delivery methods, we developed special silica colloidal crystal (SCC)-embedded chitosan hydrogel films. The SCC films served as an interference substrate and drug storage layer, while the chitosan hydrogel served as a cover to regulate the drug release. The optical interferometry was performed to dynamically monitor the volume phase transition of chitosan hydrogel response to pH stimulation. Furthermore, the effects of crosslinking ratio and hydrogel thickness on the swelling properties of chitosan hydrogel were also evaluated. More importantly, the pH-responsive swelling of chitosan hydrogel was used to slowly release indomethacin. This system may provide support for drug delivery studies, therefore further expected to apply in the enhancement of the treatment efficiency of new drug therapies.


Assuntos
Quitosana , Hidrogéis , Hidrogéis/química , Quitosana/química , Liberação Controlada de Fármacos , Dióxido de Silício , Concentração de Íons de Hidrogênio
20.
Chemosphere ; 307(Pt 3): 136031, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35981624

RESUMO

Cadmium (Cd) is a toxic heavy metal affecting the normal growth of plants. Nitrate (NO3-) and ammonium (NH4+) are the primary forms of inorganic nitrogen (N) absorbed by plants. However, the mechanism of N absorption and regulation under Cd stress remains unclear. This study found that: (1) Cd treatment affected the biomass, root length, and Cd2+ flux in Solanum nigrum seedling roots. Specifically, 50 µM Cd significantly inhibited NO3- influx while increased NH4+ influx compared with 0 and 5 µM Cd treatments measured by non-invasive micro-test technology. (2) qRT-PCR analysis showed that 50 µM Cd inhibited the expressions of nitrate transporter genes, SnNRT2;4 and SnNRT2;4-like, increased the expressions of ammonium transporter genes, SnAMT1;2 and SnAMT1;3, in the roots. (3) Under NH4+ supply, 50 µM Cd significantly induced the expressions of the aquaporin genes, SnPIP1;5, SnPIP2;7, and SnTIP2;1. Our results showed that 50 µM Cd stress promoted NH4+ absorption by up-regulating the gene expressions of NH4+ transporter and aquaporins, suggesting that high Cd stress can affect the preference of N nutrition in S. nigrum.


Assuntos
Compostos de Amônio , Aquaporinas , Poluentes do Solo , Solanum nigrum , Compostos de Amônio/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Biodegradação Ambiental , Cádmio/análise , Proteínas de Membrana Transportadoras/metabolismo , Nitratos/análise , Nitrogênio/análise , Raízes de Plantas/metabolismo , Poluentes do Solo/análise , Solanum nigrum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA