Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.330
Filtrar
1.
Radiat Oncol ; 19(1): 60, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773605

RESUMO

BACKGROUND: The brachytherapy is an indispensable treatment for gynecological tumors, but the quality and efficiency of brachytherapy training for residents is still unclear. METHODS: An anonymous questionnaire was designed to collect information on gynecological brachytherapy (GBT) training for radiation oncology residents from 28 training bases in China. The questionnaire content was designed based on the principle of competency based medical education (CBME). The Likert scale was employed to evaluate self-reported competence and comprehension regarding GBT. A total of 132 senior residents were included in the final analysis. RESULTS: 53.79% (71/132) of senior residents had experience in performing image-guided GBT, whereas 76.52% (101/132) had observed the procedure during their standardized residency training. The proportion of senior residents who reported having the self-reported competence to independently complete the GBT was 78.03% for intracavity GBT, 75.00% for vaginal stump GBT, and 50.03% for interstitial GBT, respectively. The number of successful completion of Interstitial, intracavity and vaginal GBT was correlated with the self- confidence of trainees after standardized training. In particular, the independent completion of interstitial GBT for more than 20 cases was an independent factor for the self-reported competence of senior residents. During the training period, 50.76% and 56.82% of the residents had not participated in the specialized examinations and professional GBT courses. CONCLUSIONS: The study revealed that the self-confidence of residents to independently complete brachytherapy was relatively high, and the specialized curriculum setting and training process assessment for brachytherapy training still need to be strengthened in the future.


Assuntos
Braquiterapia , Competência Clínica , Neoplasias dos Genitais Femininos , Internato e Residência , Radioterapia (Especialidade) , Humanos , Braquiterapia/métodos , Feminino , China , Inquéritos e Questionários , Neoplasias dos Genitais Femininos/radioterapia , Radioterapia (Especialidade)/educação , Adulto , Masculino
2.
Bioorg Chem ; 148: 107427, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38728911

RESUMO

Histone acetyltransferase CREB-binding protein (CBP) and its homologous protein p300 are key transcriptional activators that can activate oncogene transcription, which present promising targets for cancer therapy. Here, we designed and synthesized a series of p300/CBP targeted low molecular weight PROTACs by assembling the covalent ligand of RNF126 E3 ubiquitin ligase and the bromodomain ligand of the p300/CBP. The optimal molecule A8 could effectively degrade p300 and CBP through the ubiquitin-proteasome system in time- and concentration-dependent manners, with half-maximal degradation (DC50) concentrations of 208.35/454.35 nM and 82.24/79.45 nM for p300/CBP in MV4-11 and Molm13 cell lines after 72 h of treatment. And the degradation of p300/CBP by A8 is dependent on the ubiquitin-proteasome pathway and its simultaneous interactions with the target proteins and RNF126. A8 exhibits good antiproliferative activity in a series of p300/CBP-dependent cancer cells. It could transcriptionally inhibit the expression of c-Myc, induce cell cycle arrest in the G0/G1 phase and apoptosis in MV4-11 cells. This study thus provided us a new chemotype for the development of drug-like PROTACs targeting p300/CBP, which is expected to be applied in cancer therapy.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38772315

RESUMO

Owing to population growth and environmental pollution, freshwater aquaculture has been rapidly shrinking in recent years. Aquaculture in saline-alkaline waters is a crucial strategy to meet the increasing demand for aquatic products. The Chinese mitten crab is an important economic food in China, but the molecular mechanism by which it tolerates carbonate alkalinity (CA) in water remains unclear. Here, we found that enzyme activities of the tricarboxylic acid (TCA) cycle in the gills, such as citrate synthase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and malate dehydrogenase, were markedly reduced under CA stress induced by 40 mM NaHCO3. Secondly, the TCA cycle in the gills is inhibited under acute CA stress, according to proteomic and metabolomic analyses. The expressions of six enzymes, namely aconitate hydratase, isocitrate dehydrogenase, 2-oxoglutarate dehydrogenase, dihydrolipoyl dehydrogenase, succinate-CoA ligase, and malate dehydrogenase, were downregulated, resulting in the accumulation of phosphoenolpyruvic acid, citric acid, cis-aconitate, and α-ketoglutaric acid. Finally, we testified that if the TCA cycle is disturbed by malonate, the survival rate increases in CA water. To our knowledge, this is the first study to show that the TCA cycle in the gills is inhibited under CA stress. Overall, the results provide new insights into the molecular mechanism of tolerance to saline-alkaline water in crabs, which helped us expand the area for freshwater aquaculture and comprehensively understand the physiological characteristics of crab migration.

4.
Biomol Biomed ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38761408

RESUMO

A platinum-based concurrent chemoradiotherapy (CCRT) is the standard treatment for refractory cervical cancer (CC). However, the recurrence of disease and the occurrence of metastasis remain prevalent. We observed the long-term efficacy and safety of bevacizumab combined with neoadjuvant chemotherapy (NACT) and CCRT in refractory CC. A total of 62 patients with refractory CC were enrolled in this study from January 2016 to December 2019. The NACT regimen included bevacizumab (7.5 mg/kg), docetaxel (75 mg/m2), and cisplatin (75 mg/m2), administered tri-weekly for 2 cycles. The CCRT regimen included bevacizumab (7.5 mg/kg) and cisplatin (75 mg/m2), administered tri-weekly for 2 cycles. A dose of 45-50 Gy was prescribed for external beam radiotherapy (EBRT), while 30-35 Gy in 4-5 fractions was prescribed for brachytherapy (BT). Among the patients, 21 patients (33.9%) were at stages IIB-IIIB, 8 patients (12.9%) were at stage IIIC1, 19 patients (30.6%) were at stage IIIC2, and 14 patients (22.6%) were at stage IVB. Pelvic, para-aortic, supraclavicular, and inguinal lymph node metastases were discovered in 41 patients (66.1%). The median follow-up was 49.8 months (12.3-82.7 months). The median tumor volumes pre-treatment, after NACT, and before BT were 84.64 ± 53.15 cm3, 1.64 ± 13.15 cm3, and 0 ± 1.5 cm3, respectively. Complete clinical response (cCR) rates after NACT and EBRT were 35.5% and 66.1%, respectively. Four years after the diagnosis, the overall survival (OS) rate was 78.6%, the local region-free survival (LRFS) rate was 91.3%, the disease-free survival (DFS) rate was 70.6%, and the distant metastasis-free survival (DMFS) rate was 81.4%. A total of 29 patients (46.8%) experienced grade 3/4 hematological toxicity, 3 patients (4.8%) experienced grade 3 gastrointestinal toxicities, and none experienced grade 5 adverse events. Bevacizumab combined with NACT and CCRT significantly improved cCR and OS in refractory CC with acceptable toxicity.

5.
Arch Gerontol Geriatr ; 125: 105486, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38761527

RESUMO

BACKGROUND: Osteoporosis and sarcopenia are common age-related conditions characterized by the progressive loss of bone density and muscle mass, respectively. Their co-occurrence, often referred to as osteosarcopenia, presents significant challenges in elderly care due to increased fragility and functional impairment. Existing studies have identified shared pathological mechanisms between these conditions, including inflammation, hormonal imbalances, and metabolic dysregulation, but a comprehensive understanding of their molecular interplay remains incomplete. OBJECTIVE: This study aims to deepen our understanding of the molecular interactions between sarcopenia and osteoporosis through an integrated omics approach, revealing potential therapeutic targets and biomarkers. METHODS: Employing a combination of proteomics and transcriptomics analyses, this study analyzed bone and muscle tissue samples from patients diagnosed with osteoporosis and osteosarcopenia. Techniques included high-throughput sequencing and label-free proteomics, supported by advanced bioinformatics tools for data analysis and functional annotation of genes and proteins. RESULTS: The study found marked differences in gene and protein expressions between osteoporosis and osteosarcopenia tissues. Specifically, genes like PDIA5, TUBB1, and CYFIP2 in bone, along with MYH7 and NCAM1 in muscle, exhibited differential expression at both mRNA and protein levels. Pathway analyses revealed the significance of oxidative-reduction balance, cellular metabolism, and immune response in the progression of these conditions. Importantly, the study pinpointed osteoclast differentiation and NF-kappa B signaling pathways as critical in the molecular dynamics of osteosarcopenia, suggesting potential targets for therapy. CONCLUSIONS: This study utilized transcriptomics and proteomics to identify key genes and proteins impacting sarcopenia and osteoporosis, employing advanced network tools to delineate interaction networks and crucial signaling pathways. It highlighted genes like PDIA5 and TUBB1, consistently expressed in both analyses, involved in pathways such as osteoclast differentiation and cytokine interactions. These insights enhance understanding of the molecular interplay in bone and muscle degeneration with aging, suggesting directions for future research into therapeutic interventions and prevention strategies for age-related degenerative diseases.

6.
Proc Natl Acad Sci U S A ; 121(20): e2322625121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709915

RESUMO

Soft robots often draw inspiration from nature to navigate different environments. Although the inching motion and crawling motion of caterpillars have been widely studied in the design of soft robots, the steering motion with local bending control remains challenging. To address this challenge, we explore modular origami units which constitute building blocks for mimicking the segmented caterpillar body. Based on this concept, we report a modular soft Kresling origami crawling robot enabled by electrothermal actuation. A compact and lightweight Kresling structure is designed, fabricated, and characterized with integrated thermal bimorph actuators consisting of liquid crystal elastomer and polyimide layers. With the modular design and reprogrammable actuation, a multiunit caterpillar-inspired soft robot composed of both active units and passive units is developed for bidirectional locomotion and steering locomotion with precise curvature control. We demonstrate the modular design of the Kresling origami robot with an active robotic module picking up cargo and assembling with another robotic module to achieve a steering function. The concept of modular soft robots can provide insight into future soft robots that can grow, repair, and enhance functionality.

7.
Environ Int ; 187: 108680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723455

RESUMO

The global health crisis posed by increasing antimicrobial resistance (AMR) implicitly requires solutions based a One Health approach, yet multisectoral, multidisciplinary research on AMR is rare and huge knowledge gaps exist to guide integrated action. This is partly because a comprehensive survey of past research activity has never performed due to the massive scale and diversity of published information. Here we compiled 254,738 articles on AMR using Artificial Intelligence (AI; i.e., Natural Language Processing, NLP) methods to create a database and information retrieval system for knowledge extraction on research perfomed over the last 20 years. Global maps were created that describe regional, methodological, and sectoral AMR research activities that confirm limited intersectoral research has been performed, which is key to guiding science-informed policy solutions to AMR, especially in low-income countries (LICs). Further, we show greater harmonisation in research methods across sectors and regions is urgently needed. For example, differences in analytical methods used among sectors in AMR research, such as employing culture-based versus genomic methods, results in poor communication between sectors and partially explains why One Health-based solutions are not ensuing. Therefore, our analysis suggest that performing culture-based and genomic AMR analysis in tandem in all sectors is crucial for data integration and holistic One Health solutions. Finally, increased investment in capacity development in LICs should be prioritised as they are places where the AMR burden is often greatest. Our open-access database and AI methodology can be used to further develop, disseminate, and create new tools and practices for AMR knowledge and information sharing.


Assuntos
Inteligência Artificial , Saúde Global , Saúde Única , Humanos , Farmacorresistência Bacteriana , Resistência Microbiana a Medicamentos , Antibacterianos
8.
Nat Commun ; 15(1): 4085, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744837

RESUMO

Global riverine nitrous oxide (N2O) emissions have increased more than 4-fold in the last century. It has been estimated that the hyporheic zones in small streams alone may contribute approximately 85% of these N2O emissions. However, the mechanisms and pathways controlling hyporheic N2O production in stream ecosystems remain unknown. Here, we report that ammonia-derived pathways, rather than the nitrate-derived pathways, are the dominant hyporheic N2O sources (69.6 ± 2.1%) in agricultural streams around the world. The N2O fluxes are mainly in positive correlation with ammonia. The potential N2O metabolic pathways of metagenome-assembled genomes (MAGs) provides evidence that nitrifying bacteria contain greater abundances of N2O production-related genes than denitrifying bacteria. Taken together, this study highlights the importance of mitigating agriculturally derived ammonium in low-order agricultural streams in controlling N2O emissions. Global models of riverine ecosystems need to better represent ammonia-derived pathways for accurately estimating and predicting riverine N2O emissions.


Assuntos
Amônia , Compostos de Amônio , Bactérias , Ecossistema , Óxido Nitroso , Rios , Óxido Nitroso/metabolismo , Rios/microbiologia , Rios/química , Compostos de Amônio/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Amônia/metabolismo , Metagenoma , Agricultura , Nitratos/metabolismo , Desnitrificação , Nitrificação , Redes e Vias Metabólicas/genética
9.
Environ Sci Technol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753980

RESUMO

A myriad of nonantibiotic compounds is released into the environment, some of which may contribute to the dissemination of antimicrobial resistance by stimulating conjugation. Here, we analyzed a collection of studies to (i) identify patterns of transfer stimulation across groups and concentrations of chemicals, (ii) evaluate the strength of evidence for the proposed mechanisms behind conjugal stimulation, and (iii) examine the plausibility of alternative mechanisms. We show that stimulatory nonantibiotic compounds act at concentrations from 1/1000 to 1/10 of the minimal inhibitory concentration for the donor strain but that stimulation is always modest (less than 8-fold). The main proposed mechanisms for stimulation via the reactive oxygen species/SOS cascade and/or an increase in cell membrane permeability are not unequivocally supported by the literature. However, we identify the reactive oxygen species/SOS cascade as the most likely mechanism. This remains to be confirmed by firm molecular evidence. Such evidence and more standardized and high-throughput conjugation assays are needed to create technologies and solutions to limit the stimulation of conjugal gene transfer and contribute to mitigating global antibiotic resistance.

10.
Curr Med Sci ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748371

RESUMO

OBJECTIVE: Sepsis is considered a major cause of health loss in children and had high mortality and morbidity. Currently, there is no reliable model for predicting the prognosis of pediatric patients with sepsis. This study aimed to analyze the clinical characteristics of sepsis in children and assess the risk factors associated with poor prognosis in pediatric sepsis patients to identify timely interventions and improve their outcomes. METHODS: This study analyzed the clinical indicators and laboratory results of septic patients hospitalized in the Pediatric Intensive Care Unit of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China, from January 1, 2019, to December 31, 2021. Risk factors for sepsis were identified by logistic regression analyses. RESULTS: A total of 355 children with sepsis were enrolled, with 333 children (93.8%) in the good prognosis group, and 22 children (6.2%) in the poor prognosis group. Among them, there were 255 patients (71.8%) in the sepsis group, and 100 patients (28.2%) in the severe sepsis group. The length of hospital stay in the poor prognosis group was longer than that in the good prognosis group (P<0.01). The levels of interleukin 1ß (IL-1ß) in the poor prognosis group were higher than those in the good prognosis group (P>0.05), and the platelet (PLT), albumin (ALB), and hemoglobin (Hb) levels were lower in the poor prognosis group (P<0.01). The IL-8 levels in the severe sepsis group were higher than those in the sepsis group (P<0.05). Multiple logistic regression analysis suggested that lower Hb levels, ALB levels, peak PLT counts, and higher IL-1ß levels were independent risk factors for poor prognosis in children with sepsis. CONCLUSION: Lower Hb, ALB, and PLT counts and elevated IL-1ß are independent risk factors for poor prognosis in children with sepsis.

11.
BMC Genomics ; 25(1): 346, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580907

RESUMO

BACKGROUND: The yak (Bos grunniens) is a large ruminant species that lives in high-altitude regions and exhibits excellent adaptation to the plateau environments. To further understand the genetic characteristics and adaptive mechanisms of yak, we have developed a multi-omics database of yak including genome, transcriptome, proteome, and DNA methylation data. DESCRIPTION: The Yak Genome Database ( http://yakgenomics.com/ ) integrates the research results of genome, transcriptome, proteome, and DNA methylation, and provides an integrated platform for researchers to share and exchange omics data. The database contains 26,518 genes, 62 transcriptomes, 144,309 proteome spectra, and 22,478 methylation sites of yak. The genome module provides access to yak genome sequences, gene annotations and variant information. The transcriptome module offers transcriptome data from various tissues of yak and cattle strains at different developmental stages. The proteome module presents protein profiles from diverse yak organs. Additionally, the DNA methylation module shows the DNA methylation information at each base of the whole genome. Functions of data downloading and browsing, functional gene exploration, and experimental practice were available for the database. CONCLUSION: This comprehensive database provides a valuable resource for further investigations on development, molecular mechanisms underlying high-altitude adaptation, and molecular breeding of yak.


Assuntos
Multiômica , Proteoma , Animais , Bovinos/genética , Proteoma/genética , Genoma , Transcriptoma , Anotação de Sequência Molecular
12.
Infect Dis Poverty ; 13(1): 28, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610035

RESUMO

BACKGROUND: Despite the increasing focus on strengthening One Health capacity building on global level, challenges remain in devising and implementing real-world interventions particularly in the Asia-Pacific region. Recognizing these gaps, the One Health Action Commission (OHAC) was established as an academic community for One Health action with an emphasis on research agenda setting to identify actions for highest impact. MAIN TEXT: This viewpoint describes the agenda of, and motivation for, the recently formed OHAC. Recognizing the urgent need for evidence to support the formulation of necessary action plans, OHAC advocates the adoption of both bottom-up and top-down approaches to identify the current gaps in combating zoonoses, antimicrobial resistance, addressing food safety, and to enhance capacity building for context-sensitive One Health implementation. CONCLUSIONS: By promoting broader engagement and connection of multidisciplinary stakeholders, OHAC envisions a collaborative global platform for the generation of innovative One Health knowledge, distilled practical experience and actionable policy advice, guided by strong ethical principles of One Health.


Assuntos
Saúde Única , Animais , Ásia , Fortalecimento Institucional , Políticas , Zoonoses/prevenção & controle
14.
J Steroid Biochem Mol Biol ; 241: 106521, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631601

RESUMO

Increased cortisol levels in the preovulatory follicular fluid suggests a role of glucocorticoid in human ovulation. However, the mechanisms through which cortisol regulates the ovulatory process remain poorly understood. In this study, we examined the upregulation of f5 mRNA by glucocorticoid and its receptor (Gr) in the preovulatory follicles of zebrafish. Our findings demonstrate a significant increase in 11ß-hydroxysteroid dehydrogenase type 2 (hsd11b2), a cortisol response gene, in preovulatory follicles. Additionally, hydrocortisone exerts a dose- and time-dependent upregulation of f5 mRNA in these follicles. Importantly, this stimulatory effect is Gr-dependent, as it was completely abolished in gr-/- mutants. Furthermore, site-directed mutagenesis identified a glucocorticoid response element (GRE) in the promoter of zebrafish f5. Interestingly, successive incubation of hydrocortisone and the native ovulation-inducing steroid, progestin (17α,20ß-dihydroxy-4-pregnen-3-one, DHP), further enhanced f5 expression in preovulatory follicles. Overall, our results indicate that the dramatic increase of f5 expression in preovulatory follicles is partially attributable to the regulation of glucocorticoid and Gr.

15.
Nat Commun ; 15(1): 3218, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622151

RESUMO

Flash Joule heating (FJH) is an emerging and profitable technology for converting inexhaustible biomass into flash graphene (FG). However, it is challenging to produce biomass FG continuously due to the lack of an integrated device. Furthermore, the high-carbon footprint induced by both excessive energy allocation for massive pyrolytic volatiles release and carbon black utilization in alternating current-FJH (AC-FJH) reaction exacerbates this challenge. Here, we create an integrated automatic system with energy requirement-oriented allocation to achieve continuous biomass FG production with a much lower carbon footprint. The programmable logic controller flexibly coordinated the FJH modular components to realize the turnover of biomass FG production. Furthermore, we propose pyrolysis-FJH nexus to achieve biomass FG production. Initially, we utilize pyrolysis to release biomass pyrolytic volatiles, and subsequently carry out the FJH reaction to focus on optimizing the FG structure. Importantly, biochar with appropriate resistance is self-sufficient to initiate the FJH reaction. Accordingly, the medium-temperature biochar-based FG production without carbon black utilization exhibited low carbon emission (1.9 g CO2-eq g-1 graphene), equivalent to a reduction of up to ~86.1% compared to biomass-based FG production. Undoubtedly, this integrated automatic system assisted by pyrolysis-FJH nexus can facilitate biomass FG into a broad spectrum of applications.


Assuntos
Carbono , Carvão Vegetal , Grafite , Biomassa , Fuligem
16.
Sci Rep ; 14(1): 9371, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654114

RESUMO

A wealth of evidence intimates a profound connection between the immune system and osteonecrosis, albeit the specific immune factors underlying this connection remain largely veiled. A bidirectional Mendelian randomization (MR) study was conducted based on genome-wide association study summary data to identify causal links between 731 immune factors and osteonecrosis including drug-induced osteonecrosis. Preliminary MR analysis was accomplished utilizing the inverse-variance weighted method under a multiplicative random effects model, and heterogeneity and potential horizontal pleiotropy were evaluated through Cochrane's Q-test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out analysis. Upon false discovery rate correction, the gene-predicted level of one immune factor (CD62L - monocyte %monocyte) exhibited a significant positive correlation with osteonecrosis, while eight immune traits associated with monocytes, dendritic cells, and NK cells demonstrated significant causal effects with drug-induced osteonecrosis. Reverse MR revealed no significant correlations. This MR research provides genetic evidence for the causal associations between a broad spectrum of immune factors and osteonecrosis. Such a study aids in unraveling the intricate interaction patterns between the immune and skeletal systems, elucidating the pathogenesis of osteonecrosis, and identifying potential novel therapeutic approaches.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Osteonecrose , Humanos , Osteonecrose/genética , Osteonecrose/imunologia , Osteonecrose/etiologia , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fatores Imunológicos/genética , Monócitos/imunologia , Monócitos/metabolismo
17.
Zool Res ; 45(3): 491-505, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38682431

RESUMO

Coilia nasus, a migratory fish species found in the middle and lower reaches of the Yangtze River and along offshore areas of China, possesses considerable aquacultural and economic potential. However, the species faces challenges due to significant variation in the gonadal development rate among females, resulting in inconsistent ovarian maturation times at the population level, an extended reproductive period, and limitations on fish growth rate due to ovarian prematurity. In the present study, we combined genome-wide association study (GWAS) and comparative transcriptome analysis to investigate the potential single nucleotide polymorphisms (SNPs) and candidate genes associated with population-asynchronous ovarian development in C. nasus. Genotyping of the female population based on whole-genome resequencing yielded 2 120 695 high-quality SNPs, 39 of which were suggestively associated with ovarian development. Of note, a significant SNP peak on LG21 containing 30 suggestively associated SNPs was identified, with cpne5a determined as the causal gene of the peak. Therefore, single-marker and haplotype association analyses were performed on cpne5a, revealing four genetic markers ( P<0.05) and seven haplotypes (r 2>0.9) significantly associated with the phenotype. Comparative transcriptome analysis of precociously and normally maturing individuals screened out 29 and 426 overlapping differentially expressed genes in the brain and ovary, respectively, between individuals of different body sizes. Integrating the GWAS and transcriptome analysis results, this study identified genes and pathways related to hypothalamic-pituitary-gonadal axis hormone secretion, extracellular matrix, angiogenesis, and gap junctions involved in population-asynchronous ovarian development. The insights gained from this study provide a basis for a deeper understanding of the molecular mechanisms underlying ovarian development in fish and may facilitate the genetic breeding of C. nasus strains exhibiting population-synchronous ovarian development in the future.


Assuntos
Estudo de Associação Genômica Ampla , Ovário , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Marcadores Genéticos , Peixes/genética , Peixes/crescimento & desenvolvimento
18.
Plants (Basel) ; 13(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674484

RESUMO

Trait-based approaches are increasingly used to understand crop yield improvement, although they have not been widely applied to anatomical traits. Little is known about the relationships between root and leaf anatomy and yield in wheat. We selected 20 genotypes that have been widely planted in Luoyang, in the major wheat-producing area of China, to explore these relationships. A field study was performed to measure the yields and yield components of the genotypes. Root and leaf samples were collected at anthesis to measure the anatomical traits relevant to carbon allocation and water transport. Yield was negatively correlated with cross-sectional root cortex area, indicating that reduced root cortical tissue and therefore reduced carbon investment have contributed to yield improvement in this region. Yield was positively correlated with root xylem area, suggesting that a higher water transport capacity has also contributed to increased yields in this study. The area of the leaf veins did not significantly correlate with yield, showing that the high-yield genotypes did not have larger veins, but they may have had a conservative water use strategy, with tight regulation of water loss from the leaves. This study demonstrates that breeding for higher yields in this region has changed wheat's anatomical traits, reducing the roots' cortical tissue and increasing the roots' xylem investment.

19.
ACS ES T Water ; 4(4): 1166-1176, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633372

RESUMO

The widespread adoption of an agricultural circular economy requires the recovery of resources such as water, organic matter, and nutrients from livestock manure and sanitation. While this approach offers many benefits, we argue this is not without potential risks to human and environmental health that largely stem from the presence of contaminants in the recycled resources (e.g., pharmaceuticals, pathogens). We discuss context specific challenges and solutions across the three themes: (1) contaminant monitoring; (2) collection transport and treatment; and (3) regulation and policy. We advocate for the redesign of sanitary and agricultural management practices to enable safe resource reuse in a proportionate and effective way. In populous urban regions with access to sanitation provision, processes can be optimized using emergent technologies to maximize removal of contaminant from excreta prior to reuse. Comparatively, in regions with limited existing capacity for conveyance of excreta to centralized treatment facilities, we suggest efforts should focus on creation of collection facilities (e.g., pit latrines) and decentralized treatment options such as composting systems. Overall, circular economy approaches to sanitation and resource management offer a potential solution to a pressing challenge; however, to ensure this is done in a safe manner, contaminant risks must be mitigated.

20.
ACS Nano ; 18(17): 11103-11119, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623806

RESUMO

In recent years, carbon nanotubes have emerged as a widely used nanomaterial, but their human exposure has become a significant concern. In our former study, we reported that pulmonary exposure of multiwalled carbon nanotubes (MWCNTs) promoted tumor metastasis of breast cancer; macrophages were key effectors of MWCNTs and contributed to the metastasis-promoting procedure in breast cancer, but the underlying molecular mechanisms remain to be explored. As a follow-up study, we herein demonstrated that MWCNT exposure in breast cancer cells and macrophage coculture systems promoted metastasis of breast cancer cells both in vitro and in vivo; macrophages were skewed into M2 polarization by MWCNT exposure. LncRNA NBR2 was screened out to be significantly decreased in MWCNTs-stimulated macrophages through RNA-seq; depletion of NBR2 led to the acquisition of M2 phenotypes in macrophages by activating multiple M2-related pathways. Specifically, NBR2 was found to positively regulate the downstream gene TBX1 through H3k27ac activation. TBX1 silence rescued NBR2-induced impairment of M2 polarization in IL-4 & IL-13-stimulated macrophages. Moreover, NBR2 overexpression mitigated the enhancing effects of MWCNT-exposed macrophages on breast cancer metastasis. This study uncovered the molecular mechanisms underlying breast cancer metastasis induced by MWCNT exposure.


Assuntos
Neoplasias da Mama , Macrófagos , Nanotubos de Carbono , Nanotubos de Carbono/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Feminino , Camundongos , Animais , Proteínas com Domínio T/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metástase Neoplásica , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...