Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3437, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653755

RESUMO

Phytoalexin sakuranetin functions in resistance against rice blast. However, the mechanisms underlying the effects of sakuranetin remains elusive. Here, we report that rice lines expressing resistance (R) genes were found to contain high levels of sakuranetin, which correlates with attenuated endocytic trafficking of plasma membrane (PM) proteins. Exogenous and endogenous sakuranetin attenuates the endocytosis of various PM proteins and the fungal effector PWL2. Moreover, accumulation of the avirulence protein AvrCO39, resulting from uptake into rice cells by Magnaporthe oryzae, was reduced following treatment with sakuranetin. Pharmacological manipulation of clathrin-mediated endocytic (CME) suggests that this pathway is targeted by sakuranetin. Indeed, attenuation of CME by sakuranetin is sufficient to convey resistance against rice blast. Our data reveals a mechanism of rice against M. oryzae by increasing sakuranetin levels and repressing the CME of pathogen effectors, which is distinct from the action of many R genes that mainly function by modulating transcription.


Assuntos
Ascomicetos , Resistência à Doença , Endocitose , Flavonoides , Oryza , Fitoalexinas , Doenças das Plantas , Proteínas de Plantas , Oryza/microbiologia , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Doenças das Plantas/microbiologia , Endocitose/efeitos dos fármacos , Resistência à Doença/genética , Resistência à Doença/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Plantas Geneticamente Modificadas , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
2.
J Fungi (Basel) ; 9(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38132755

RESUMO

In this study, we focused on grapevine-endophyte interactions and reprogrammed secondary metabolism in the host plant due to defense against the colonization of endophytes. Thus, the transcriptional responses of tissue cultured grapevine seedlings (Vitis vinifera L. cv.: Cabernet Sauvignon) to two fungal endophytes Epicoccum layuense R2-21 (Epi R2-21) and Alternaria alternata XHYN2 (Alt XHYN2) at three different time points (6 h, 6 d, 15 d) were analyzed. As expected, a total of 5748 and 5817 differentially expressed genes (DEGs) were separately initiated in Epi R2-21 and Alt XHYN2 symbiotic tissue cultured seedlings compared to no endophyte treatment. The up-regulated DEGs at all time points in Epi R2-21- or Alt XHYN2-treated seedlings were mainly enriched in the flavonoid biosynthesis, phenylpropanoid biosynthesis, phenylalanine metabolism, stilbenoid, diarylheptanoid and gingerol biosynthesis, and circadian rhythm-plant pathways. In addition, the up-regulated DEGs at all sampling times in Alt XHYN2-treated tissue cultured seedlings were enriched in the plant-pathogen interaction pathway, but appeared in Epi R2-21 symbiotic seedlings only after 15 d of treatment. The down-regulated DEGs were not enriched in any KEGG pathways after 6 h inoculation for Epi R2-21 and Alt XHYN2 treatments, but were enriched mainly in photosynthesis-antenna proteins and plant hormone signal transduction pathways at other sampling times. At three different time points, a total of 51 DEGs (all up-regulated, 1.33-10.41-fold) were involved in secondary metabolism, and 22 DEGs (all up-regulated, 1.01-8.40-fold) were involved in defense responses in endophytic fungi symbiotic tissue cultured seedlings. The protein-protein interaction (PPI) network demonstrated that genes encoding CHS (VIT_10s0042g00920, VIT_14s0068g00920, and VIT_16s0100g00910) and the VIT_11s0065g00350 gene encoding CYP73A mediated the defense responses, and might induce more defense-associated metabolites. These results illustrated the activation of stress-associated secondary metabolism in the host grapevine during the establishment of fungi-plant endophytism. This work provides avenues for reshaping the qualities and characteristics of wine grapes utilizing specific endophytes and better understanding plant-microbe interactions.

3.
Front Plant Sci ; 14: 1258316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780502

RESUMO

Panax notoginseng (P. notoginseng) is an invaluable perennial medicinal herb. However, the roots of P. notoginseng are frequently subjected to severe damage caused by root-knot nematode (RKN) infestation. Although we have observed that P. notoginseng possessed adult-plant resistance (APR) against RKN disease, the defense response mechanisms against RKN disease in different age groups of P. notoginseng remain unexplored. We aimed to elucidate the response mechanisms of P. notoginseng at different stages of development to RKN infection by employing transcriptome, metabolome, and histochemistry analyses. Our findings indicated that distinct age groups of P. notoginseng may activate the phenylpropanoid and flavonoid biosynthesis pathways in varying ways, leading to the synthesis of phenolics, flavonoids, lignin, and anthocyanin pigments as both the response and defense mechanism against RKN attacks. Specifically, one-year-old P. notoginseng exhibited resistance to RKN through the upregulation of 5-O-p-coumaroylquinic acid and key genes involved in monolignol biosynthesis, such as PAL, CCR, CYP73A, CYP98A, POD, and CAD. Moreover, two-year-old P. notoginseng enhanced the resistance by depleting chlorogenic acid and downregulating most genes associated with monolignol biosynthesis, while concurrently increasing cyanidin and ANR in flavonoid biosynthesis. Three-year-old P. notoginseng reinforced its resistance by significantly increasing five phenolic acids related to monolignol biosynthesis, namely p-coumaric acid, chlorogenic acid, 1-O-sinapoyl-D-glucose, coniferyl alcohol, and ferulic acid. Notably, P. notoginseng can establish a lignin barrier that restricted RKN to the infection site. In summary, P. notoginseng exhibited a potential ability to impede the further propagation of RKN through the accumulation or depletion of the compounds relevant to resistance within the phenylpropanoid and flavonoid pathways, as well as the induction of lignification in tissue cells.

4.
Front Plant Sci ; 14: 1187372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448867

RESUMO

Plant nucleotide-binding and leucine-rich repeat (NLR) proteins are immune sensors that detect pathogen effectors and initiate a strong immune response. In many cases, single NLR proteins are sufficient for both effector recognition and signaling activation. These proteins possess a conserved architecture, including a C-terminal leucine-rich repeat (LRR) domain, a central nucleotide-binding (NB) domain, and a variable N-terminal domain. Nevertheless, many paired NLRs linked in a head-to-head configuration have now been identified. The ones carrying integrated domains (IDs) can recognize pathogen effector proteins by various modes; these are known as sensor NLR (sNLR) proteins. Structural and biochemical studies have provided insights into the molecular basis of heavy metal-associated IDs (HMA IDs) from paired NLRs in rice and revealed the co-evolution between pathogens and hosts by combining naturally occurring favorable interactions across diverse interfaces. Focusing on structural and molecular models, here we highlight advances in structure-guided engineering to expand and enhance the response profile of paired NLR-HMA IDs in rice to variants of the rice blast pathogen MAX-effectors (Magnaporthe oryzae AVRs and ToxB-like). These results demonstrate that the HMA IDs-based design of rice materials with broad and enhanced resistance profiles possesses great application potential but also face considerable challenges.

5.
Molecules ; 28(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049944

RESUMO

The Bacillus velezensis GJ-7 strain isolated from the rhizosphere soil of Panax notoginseng showed high nematicidal activity and therefore has been considered a biological control agent that could act against the root-knot nematode Meloidogyne hapla. However, little was known about whether the GJ-7 strain could produce volatile organic compounds (VOCs) that were effective in biocontrol against M. hapla. In this study, we evaluated the nematicidal activity of VOCs produced by the fermentation of GJ-7 in three-compartment Petri dishes. The results revealed that the mortality rates of M. hapla J2s were 85% at 24 h and 97.1% at 48 h after treatment with the VOCs produced during GJ-7 fermentation. Subsequently, the VOCs produced by the GJ-7 strain were identified through solid-phase micro-extraction gas chromatography mass spectrometry (SPME-GC/MS). Six characteristic VOCs from the GJ-7 strain fermentation broth were identified, including 3-methyl-1-butanol, 3-methyl-2-pentanone, 5-methyl-2-hexanone, 2-heptanone, 2,5-dimethylpyrazine, and 6-methyl-2-heptanone. The in vitro experimental results from 24-well culture plates showed that the six volatiles had direct-contact nematicidal activity against M. hapla J2s and inhibition activity against egg hatching. In addition, 3-methyl-1-butanol and 2-heptanone showed significant fumigation effects on M. hapla J2s and eggs. Furthermore, all six of the VOCs repelled M. hapla J2 juveniles in 2% water agar Petri plates. The above data suggested that the VOCs of B. velezensis GJ-7 acted against M. hapla through multiple prevention and control modes (including direct-contact nematicidal activity, fumigant activity, and repellent activity), and therefore could be considered as potential biocontrol agents against root-knot nematodes.


Assuntos
Tylenchoidea , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/química , Antinematódeos/farmacologia , Antinematódeos/química
6.
Plant Divers ; 45(1): 104-116, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36876306

RESUMO

Compared with the use of monocultures in the field, cultivation of medicinal herbs in forests is an effective strategy to alleviate disease. Chemical interactions between herbs and trees play an important role in disease suppression in forests. We evaluated the ability of leachates from needles of Pinus armandii to induce resistance in Panax notoginseng leaves, identified the components via gas chromatography-mass spectrometry (GC-MS), and then deciphered the mechanism of 2,3-Butanediol as the main component in the leachates responsible for resistance induction via RNA sequencing (RNA-seq). Prespraying leachates and 2,3-Butanediol onto leaves could induce the resistance of P. notoginseng to Alternaria panax. The RNA-seq results showed that prespraying 2,3-Butanediol onto leaves with or without A. panax infection upregulated the expression of large number of genes, many of which are involved in transcription factor activity and the mitogen-activated protein kinase (MAPK) signaling pathway. Specifically, 2,3-Butanediol spraying resulted in jasmonic acid (JA) -mediated induced systemic resistance (ISR) by activating MYC2 and ERF1. Moreover, 2,3-Butanediol induced systemic acquired resistance (SAR) by upregulating pattern-triggered immunity (PTI)- and effector-triggered immunity (ETI)-related genes and activated camalexin biosynthesis through activation of WRKY33. Overall, 2,3-Butanediol from the leachates of pine needles could activate the resistance of P. notoginseng to leaf disease infection through ISR, SAR and camalexin biosynthesis. Thus, 2,3-Butanediol is worth developing as a chemical inducer for agricultural production.

7.
J Environ Manage ; 329: 117069, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584512

RESUMO

The under-forest economy in the agroforestry system can improve land use efficiency, protect ecological environment, and promote arable land sustainable development. However, the effects of soil moisture in the forest and irrigation strategies on the healthy growth of intercropping crops are still incomplete. Here, considering the organic Panax notoginseng cultivated under pine forests (PPF) as the research object, we explored the effects of different soil moisture on the physiological state, yield, quality and disease occurrence of PPF. Our results suggested that 80-85% and 95-100% field capacity (FC) treatments were more conducive to increased photosynthetic rate and biomass accumulation of PPF, but 50-55% and 65-70% FC treatments were more conducive to the accumulation of saponins in PPF leaves. Notably, the root rot index of PPF was highest under 95-100% FC (19.51) treatment, significantly higher than that under 65-70% FC (8.44) and 80-85% FC (10.21) treatments. Further, the rhizosphere microorganisms of PPF under different soil moisture treatments were sequenced, and the sequencing data analysis revealed that high soil moisture (95-100% FC) could destroy the microbial diversity balance and cause the accumulation of pathogens (Fusarium oxysporum and Ilyonectria radicicola), leading to a high incidence of root rot. The incidence of PPF root rot was negatively correlated with rhizosphere microbial diversity. Overall, our results highlight that the quantitative irrigation (80-85% FC) is conducive to maintaining the balance between yield, saponin content and disease occurrence of PPF, providing a practical basis for PPF irrigation strategy and promoting the sustainable development of PPF agroforestry system.


Assuntos
Panax notoginseng , Solo , Panax notoginseng/fisiologia , Raízes de Plantas , Florestas , Rizosfera , Microbiologia do Solo
8.
Plant Dis ; 107(2): 272-275, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35852901

RESUMO

Growth of the Chinese herbal medicine industry has resulted in several new pests and diseases. China is one of the world largest producers of monkshood (Aconitum carmichaelii Debx.), but an unidentified root-knot nematode has become a significant pest in the southwestern provinces of Yunnan and Sichuan. Morphological characteristics and the ribosomal DNA-internal transcribed spacer and D2-D3 region of the 28S ribosomal RNA gene sequences were used to identify the nematode as Meloidogyne hapla. Through investigation, this is the first report of M. hapla infecting monkshood in Yunnan and Sichuan Provinces.


Assuntos
Aconitum , Tylenchoidea , Animais , Aconitum/genética , China , Tylenchoidea/genética , DNA Ribossômico
9.
mSystems ; 7(5): e0041822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36000725

RESUMO

Harnessing indigenous soil microbial suppression is an emerging strategy for managing soilborne plant diseases. Soil moisture is a vital factor in soil microbiomes, but its role in the regulation of microbial suppression is poorly understood. Here, we investigated the correlation of root rot disease of Panax notoginseng with rhizosphere microbial communities mediated by soil moisture gradients from 55% to 100% field capacity (FC); then, we captured the disease-suppressive and disease-inductive microbiomes and validated their functions by a culture experiment with synthetic microbiotas containing keystone species. We found that proper soil moisture at 75% to 95% FC could maintain a disease-suppressive microbiome to alleviate root rot disease. However, extremely low or high soil moistures (>95% FC or <75% FC) could aggravate root rot disease by depleting the disease-suppressive microbiome while enriching the disease-inductive microbiome. Both the low-soil-moisture-enriched pathogen Monographella cucumerina and the high-soil-moisture-enriched pathogen Ilyonectria destructans could synergize with different disease-inductive microbiomes to aggravate disease. Metagenomic data confirmed that low- and high-moisture conditions suppressed antibiotic biosynthesis genes but enriched pathogenicity-related genes, resulting in a change in the soil state from disease suppressive to inductive. This study highlights the importance of soil moisture when indigenous microbial suppression is harnessed for disease control. IMPORTANCE Soilborne diseases pose a major problem in high-intensity agricultural systems due to the imbalance of microbial communities in soil, resulting in the buildup of soilborne pathogens. Harnessing indigenous soil microbial suppression is an emerging strategy for overcoming soilborne plant diseases. In this study, we showed that soil moisture is a key factor in balancing microbiome effects on root rot disease. Proper soil moisture management represent an effective approach to maintain microbial disease resistance by enriching disease-suppressive microbiomes. Conversely, moisture stresses may enrich for a disease-inductive microbiome and aid accumulation of host-specific soilborne pathogens threatening crop production. This work could provide a new strategy for sustainable control of soilborne diseases by enriching the indigenous disease-suppressive microbiome through soil moisture management.


Assuntos
Panax notoginseng , Panax notoginseng/microbiologia , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética , Solo
10.
J Econ Entomol ; 115(3): 814-825, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35512629

RESUMO

The spider mite, Tetranychus pueraricola (Ehara & Gotoh; Acari: Tetranychidae), is a serious pest in agriculture and horticulture. Application of chemical pesticides is the main mode of this pest control. Due to pesticide residues and resistance-induced resurgence of pests, there is a need to discover alternatives for spider mite management. GC16 comprises a mixture of calcium chloride (CaCl2, 45%) and lecithin (55%), which was recently found to have acaricidal properties. We evaluated the sublethal effects of GC16 on T. pueraricola using life table and enzyme [catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), carboxylesterase (CarE), glutathione S-transferases (GST), and Ca2+-ATPase (Ca2+-ATP)] activity assays. The results showed that fecundity of T. pueraricola increased at LC30 but decreased at LC50 of GC16. The intrinsic rate of increase (r) of T. pueraricola decreased under the LC30 and LC50 of GC16. GC16 concentration and exposure time significantly influenced the activities of CAT, POD, CarE, GST, and Ca2+-ATP in adult mites. Twelve hours later after the treatment, GST and Ca2+-ATP activities were significantly inhibited by LC30 but enhanced by LC50. Moreover, the demographic parameter r and enzyme activities were negatively correlated. In sum, sublethal amounts of GC16 had an adverse effect on mites, and there was a trade-off between developmental performance and physiological enzyme activity of mites under GC16 stress, and GC16 showed an acaricidal potential for T. pueraricola. This work provides guidance for the application of GC16 to control T. pueraricola.


Assuntos
Acaricidas , Tetranychidae , Acaricidas/farmacologia , Trifosfato de Adenosina , Animais , Cálcio , Tábuas de Vida
11.
Front Microbiol ; 13: 877082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572637

RESUMO

Root-knot nematodes (RKNs) are soil-borne pathogens that severely affect Panax notoginseng growth and productivity. Thus, there is an urgent need for biological control agents or green nematicides to control root-knot nematodes. Rhizosphere bacteria can effectively control RKNs through different mechanisms. In this study, the three rhizosphere Bacillus strains, isolated from the root of P. notoginseng, were evaluated for the nematicidal activity and biological control efficacy against root-knot nematodes. In addition, we also evaluated the colonization ability of the two bacterial strains with significant biocontrol effect and dynamic regulation of genes related to systemic resistance in P. notoginseng. The rhizosphere Bacillus velezensis GJ-7 and Bacillus cereus NS-2 showed high nematicidal activity against Meloidogyne hapla in vitro and significantly reduced the number of root galls in three different control experiments. The results of colonization experiments showed that the strains GJ-7 and NS-2 colonized P. notoginseng root rapidly and stably. Additionally, the colonization of the strains NS-2 and GJ-7 activated the defense-responsive genes in P. notoginseng. These results indicated that the B. cereus strain NS-2 and B. velezensis strain GJ-7 have the potential for successful ecological niche occupation and enhance plant resistance and therefore could be considered as potential biocontrol agents against root-knot nematodes.

12.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566332

RESUMO

Panax notoginseng is an important functional health product, and has been used worldwide because of a wide range of pharmacological activities, of which the taproot is the main edible or medicinal part. However, the technologies for origin discrimination still need to be further studied. In this study, an ICP-MS/MS method for the accurate determination of 49 elements was established, whereby the instrumental detection limits (LODs) were between 0.0003 and 7.716 mg/kg, whereas the quantification limits (LOQs) were between 0.0011 and 25.7202 mg/kg, recovery of the method was in the range of 85.82% to 104.98%, and the relative standard deviations (RSDs) were lower than 10%. Based on the content of multi-element in P. notoginseng (total of 89 mixed samples), the discriminant models of origins and cultivation models were accurately determined by the neural networks (prediction accuracy was 0.9259 and area under ROC curve was 0.9750) and the support vector machine algorithm (both 1.0000), respectively. The discriminant models established in this study could be used to support transparency and traceability of supply chains of P. notoginseng and thus avoid the fraud of geographic identification.


Assuntos
Panax notoginseng , Panax notoginseng/química , Análise Espectral , Espectrometria de Massas em Tandem
13.
Insects ; 13(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35621769

RESUMO

Chemical control plays a crucial role in pest management but has to face challenges due to insect resistance. It is important to discover alternatives to traditional pesticides. The spider mite Tetranychus pueraricola (Ehara & Gotoh) (Acari: Tetranychidae) is a major agricultural pest that causes severe damage to many crops. GC16 is a new agent that consists of a mixture of Calcium chloride (CaCl2) and lecithin. To explore the acaricidal effects and mode of action of GC16 against T. pueraricola, bioassays, cryogenic scanning electron microscopy (cryo-SEM) and transmission electron microscopy (TEM) were performed. GC16 had lethal effects on the eggs, larvae, nymphs, and adults of T. pueraricola, caused the mites to dehydrate and inactivate, and inhibited the development of eggs. GC16 displayed contact toxicity rather than stomach toxicity through the synergistic effects of CaCl2 with lecithin. Cryo-SEM analysis revealed that GC16 damaged T. pueraricola by disordering the array of the cuticle layer crest. Mitochondrial abnormalities were detected by TEM in mites treated by GC16. Overall, GC16 had the controlling efficacy on T. pueraricola by cuticle penetration and mitochondria dysfunction and had no effects on Picromerus lewisi and Harmonia axyridis, indicating that GC16 is likely a new eco-friendly acaricide.

14.
Plant Biotechnol (Tokyo) ; 39(4): 335-343, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37283619

RESUMO

The metabolic patterns of grape cells can be specifically shaped by different strains of dual-cultured fungal endophytes. In this work, a solid co-culture system was furtherly proposed to illustrate the different impacts of endophytic fungi on the biochemical status of grape cells of different varieties. By measuring the metabolic impacts of contact fungal endophytes on grape cells of the varieties 'Rose honey' (RH) and 'Cabernet sauvignon' (CS), we observed that most of the fungal strains used had promoting effects on grape cellular biochemistry parameters. Compared with the control, inoculation with most of the fungal strains increased the superoxide dismutase (SOD) and phenylalanine ammonia-lyase (PAL) activities as well as the total flavonoid (TF) and total phenolics (TPh) contents in both types of grape cells. Among the tested strains, RH34, RH49 and MDR36 had relatively stronger biochemical impacts on grape cells. More interestingly, in addition to the varietal specificity, a certain degree of fungal genus specificity was also observed during the metabolic interactions between fungal endophytes and grape cells, as fungal endophytes from the same genus tended to be clustered into the same group based on the affected biochemical traits. This work revealed the differential biochemical status effects of fungal endophytes on different varietal grape cells and raised the possibility of reshaping grape qualities by applying endophytes.

15.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-34136828

RESUMO

In September 2020, samples of galled roots with rhizosphere soil were collected from declining Gentiana macrophylla in Yulong County, China. The pathogenic nematodes were identified by observing morphological characteristics of females, second-stage juveniles and perineal pattern, sequence alignments, and specific amplification of sequence characterized amplified region (SCAR). The results showed that the perineal pattern of this nematode was round or oval, the dorsal arch was moderately high or low, one side or both of the lateral field extended to form a wing shape, the tail region had punctations, and the morphological characteristics and morphometric values of second-stage juveniles and females were similar to those of Meloidogyne hapla. The ITS region fragment of this nematode were highly similar to those of M. hapla in NCBI database, with a similarity of over 99.35%. Using the SCAR specific primers, a specific band with an expected size of approximately 440 bp was amplified from this nematode. Morphological and molecular identification supports the nematode species found on Gentiana macrophylla as M. hapla. This is the first report of this regulated root-knot nematode on Gentiana macrophylla in China.

16.
PLoS One ; 15(9): e0238734, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915849

RESUMO

Endophytic fungi produce many novel bioactive metabolites that are directly used as drugs or that function as the precursor structures of other chemicals. The metabolic shaping of endophytes on grape cells was reported previously. However, there are no reports on the interactions and metabolic impact of endophyte symbiosis on in vitro vine leaves, which may be examined under well-controlled conditions that are more representative of the natural situation of endophytes within grapevines. The present study used an in vitro leaf method to establish endophyte symbiosis of grapevines and analyze the effects on the metabolic profiles of grape leaves from two different cultivars, 'Rose honey' (RH) and 'Cabernet sauvignon' (CS). The effects of endophytic fungi on the metabolic profiles of grape leaves exhibited host selectivity and fungal strain specificity. Most of the endophytic fungal strains introduced novel metabolites into the two varieties of grape leaves according to the contents of the detected metabolites and composition of metabolites. Strains RH49 and MDR36, with high or moderate symbiosis rates, triggered an increased response in terms of the detected metabolites, and the strains MDR1 and MDR33 suppressed the detected metabolites in CS and RH leaves despite having strong or moderate symbiosis ability. However, the strain RH12 significantly induced the production of novel metabolites in RH leaves due to its high symbiosis ability and suppression of metabolites in CS leaves.


Assuntos
Endófitos/fisiologia , Fungos/fisiologia , Metaboloma , Folhas de Planta/metabolismo , Simbiose , Vitis/metabolismo , Vitis/microbiologia
17.
Front Microbiol ; 11: 799, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411119

RESUMO

Negative plant-soil feedback (NPSF) frequently cause replant failure in agricultural ecosystems, which has been restricting the sustainable development of agriculture. Biochar application has appealing effects on soil improvement and potential capacity to affect NPSF, but the process is poorly understood. Here, our study demonstrated that biochar amendment can effectively alleviate the NPSF and this biochar effect is strongly linked to soil microorganism in a sanqi (Panax notoginseng) production system. High-throughput sequencing showed that the bacterial and fungal communities were altered with biochar amendment, and bacterial community is more sensitive to biochar amendment than the fungal community. Biochar amendment significantly increased the soil bacterial diversity, but the fungal diversity was not significantly different between biochar-amended and non-amended soils. Moreover, we found that biochar amendment significantly increased the soil pH, electrical conductivity, organic matter, available phosphorus, available potassium, and C/N ratio. The correlation analysis showed that these increased soil chemical variables have a significantly positive correlation with the bacterial diversity. Further analysis of the soil microbial composition demonstrated that biochar soil amendment enriched the beneficial bacterium Bacillus and Lysobacter but suppressed pathogens Fusarium and Ilyonectria. In addition, we verified that biochar had no direct effect on the pathogen Fusarium solani, but can directly enrich biocontrol bacterium Bacillus subtilis. In short, biochar application can mitigate NPSF is mostly due to the fact that biochar soil amendment modified the soil microbiome, especially inhibited pathogens by enriching beneficial bacterium with antagonistic activity against pathogen.

19.
Plant Divers ; 42(2): 102-110, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32373768

RESUMO

Long-term moderately high or low temperatures can damage economically important plants. In the present study, we treated Panax notoginseng, an important traditional Chinese medicine, with temperatures of 10, 20, and 30 °C for 30 days. We then investigated P. notoginseng glycerolipidome responses to these moderate temperature stresses using an ESI/MS-MS-based lipidomic approach. Both long-term chilling (LTC, 10 °C) and long-term heat (LTH, 30 °C) decreased photo pigment levels and photosynthetic rate. LTH-induced degradation of photo pigments and glycerolipids may further cause the decline of photosynthesis and thereafter the senescence of leaves. LTC-induced photosynthesis decline is attributed to the degradation of photosynthetic pigments rather than the degradation of chloroplastidic lipids. P. notoginseng has an especially high level of lysophosphatidylglycerol, which may indicate that either P. notoginseng phospholipase A acts in a special manner on phosphatidylglycerol (PG), or that phospholipase B acts. The ratio of sulfoquinovosyldiacylglycerol (SQDG) to PG increased significantly after LTC treatment, which may indicate that SQDG partially substitutes for PG. After LTC treatment, the increase in the degree of unsaturation of plastidic lipids was less than that of extraplastidic lipids, and the increase in the unsaturation of PG was the largest among the ten lipid classes tested. These results indicate that increasing the level of unsaturated PG may play a special role in maintaining the function and stability of P. notoginseng photosystems after LTC treatment.

20.
J Integr Plant Biol ; 62(9): 1433-1451, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31912615

RESUMO

Endophytic fungi can be beneficial to plant growth. However, the molecular mechanisms underlying colonization of Acremonium spp. remain unclear. In this study, a novel endophytic Acremonium strain was isolated from the buds of Panax notoginseng and named Acremonium sp. D212. The Acremonium sp. D212 could colonize the roots of P. notoginseng, enhance the resistance of P. notoginseng to root rot disease, and promote root growth and saponin biosynthesis in P. notoginseng. Acremonium sp. D212 could secrete indole-3-acetic acid (IAA) and jasmonic acid (JA), and inoculation with the fungus increased the endogenous levels of IAA and JA in P. notoginseng. Colonization of the Acremonium sp. D212 in the roots of the rice line Nipponbare was dependent on the concentration of methyl jasmonate (MeJA) (2-15 µmol/L) and 1-naphthalenacetic acid (NAA) (10-20 µmol/L). Moreover, the roots of the JA signaling-defective coi1-18 mutant were colonized by Acremonium sp. D212 to a lesser degree than those of the wild-type Nipponbare and miR393b-overexpressing lines, and the colonization was rescued by MeJA but not by NAA. It suggests that the cross-talk between JA signaling and the auxin biosynthetic pathway plays a crucial role in the colonization of Acremonium sp. D212 in host plants.


Assuntos
Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Oxilipinas/metabolismo , Panax notoginseng/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Naftalenoacéticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...