Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(4): e14723, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38676295

RESUMO

AIMS: This study aimed to investigate the relationship between ulcerative colitis (UC) and anxiety and explore its central mechanisms using colitis mice. METHODS: Anxiety-like behavior was assessed in mice induced by 3% dextran sodium sulfate (DSS) using the elevated plus maze and open-field test. The spatial transcriptome of the hippocampus was analyzed to assess the distribution of excitatory and inhibitory synapses, and Toll-like receptor 4 (TLR4) inhibitor TAK-242 (10 mg/kg) and AAV virus interference were used to examine the role of peripheral inflammation and central molecules such as Glutamate Receptor Metabotropic 1 (GRM1) in mediating anxiety behavior in colitis mice. RESULTS: DSS-induced colitis increased anxiety-like behaviors, which was reduced by TAK-242. Spatial transcriptome analysis of the hippocampus showed an excitatory-inhibitory imbalance mediated by glutamatergic synapses, and GRM1 in hippocampus was identified as a critical mediator of anxiety behavior in colitis mice via differential gene screening and AAV virus interference. CONCLUSION: Our work suggests that the hippocampus plays an important role in brain anxiety caused by peripheral inflammation, and over-excitation of hippocampal glutamate synapses by GRM1 activation induces anxiety-like behavior in colitis mice. These findings provide new insights into the central mechanisms underlying anxiety in UC and may contribute to the development of novel therapeutic strategies for UC-associated anxiety.


Assuntos
Ansiedade , Hipocampo , Inflamação , Receptores de Glutamato Metabotrópico , Animais , Masculino , Camundongos , Ansiedade/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana , Hipocampo/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética
2.
CNS Neurosci Ther ; 30(3): e14438, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37849237

RESUMO

INTRODUCTION: Long-term spaceflight composite stress (LSCS) can cause adverse effects on human systems, including the central nervous system, which could trigger anxiety and depression. AIMS: This study aimed to identify changes in hippocampus synaptic plasticity under LSCS. METHODS: The present study simulated the real long-term space station environment by conducting a 42-day experiment that involved simulating microgravity, isolation, noise, circadian rhythm disruptions, and low pressure. The mood and behavior of the rats were assessed by behavior test. Transmission electron microscopy and patch-clamp were used to detect the changes in synapse morphology and electrophysiology, and finally, the expression of NMDA receptor channel proteins was detected by western blotting. RESULTS: The results showed that significant weight loss, anxiety, and depressive behaviors in rats were observed after being exposed to LSCS environment for 42 days. The synaptic structure was severely damaged, manifested as an obvious decrease in postsynaptic density thickness and synaptic interface curvature (p < 0.05; p < 0.05, respectively). Meanwhile, LTP was significantly impaired (p < 0.0001), and currents in the NMDAR channel were also significantly reduced (p < 0.0001). Further analysis found that LSCS decreased the expression of two key subtype proteins on this channel. CONCLUSION: These results suggested that LSCS-induced depressive behaviors by impairing synaptic plasticity in rat hippocampus.


Assuntos
Plasticidade Neuronal , Voo Espacial , Humanos , Ratos , Animais , Plasticidade Neuronal/fisiologia , Hipocampo , Sinapses , Receptores de N-Metil-D-Aspartato , Potenciação de Longa Duração/fisiologia
3.
Chin J Integr Med ; 29(10): 914-923, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357241

RESUMO

OBJECTIVE: To investigate the molecular mechanisms underlying the effect of baicalin on prostate cancer (PCa) progression both in vivo and in vitro. METHODS: The in situ PCa stem cells (PCSCs)-injected xenograft tumor models were established in BALB/c nude mice. Tumor volume and weight were respectively checked after baicalin (100 mg/kg) treatment. Hematoxylin-eosin (HE) staining was used to observe the growth arrest and cell necrosis. mRNA expression levels of acetaldehyde dehydrogenase 1 (ALDH1), CD44, CD133 and Notch1 were determined by reverse transcription-polymerase chain reaction. Protein expression levels of ALDH1, CD44, CD133, Notch1, nuclear factor κB (NF-κB) P65 and NF-κB p-P65 were detected by Western blot. Expression and subcellular location of ALDH1, CD44, CD133, Notch1 and NF-κB p65 were detected by immunofluorescence analysis. In vitro, cell cycle distribution and cell apoptosis of PC3 PCSCs was assessed by flow cytometry after baicalin (125 µmol/L) treatment. The migration and invasion abilities of PCSCs were assessed using Transwell assays. Transmission electron microscopy scanning was utilized to observe the structure and autophagosome formation of baicalin-treated PCSCs. In addition, PCSCs were infected with lentiviruses expressing human Notch1. RESULTS: Compared with the control group, the tumor volume and weight were notably reduced in mice treated with 100 mg/kg baicalin (P<0.05 or P<0.01). Histopathological analysis showed that baicalin treatment significantly inhibited cell proliferation and promoted cell apoptosis. Furthermore, baicalin treatment reduced mRNA and protein expression levels of CD44, CD133, ALDH1, and Notch1 as well as the protein expression of NF-κB p-P65 in the xenograft tumor (P<0.01). In vitro, the cell proliferation of PCSCs was significantly attenuated after treatment with 125 µmol/L baicalin for 72 h (P<0.01). The cell migration and invasion rates were decreased following treatment with baicalin for 48 and 72 h (P<0.01). Baicalin notably induced cell apoptosis and seriously damaged the structure of PCSCs. The mRNA and protein expressions of CD133, CD44, ALDH1 and Notch1 in PCSCs were significantly downregulated following baicalin treatment (P<0.01). Importantly, the inhibitory effects of baicalin on PCa progression and stemness were reversed by Notch1 overexpression (P<0.05 or P<0.01). CONCLUSION: Mechanistically, baicalin exhibited a potential therapeutic effect on PCa via inhibiting the Notch1/NF-κB signaling pathway and its mediated cancer stemness.


Assuntos
NF-kappa B , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias da Próstata/tratamento farmacológico , RNA Mensageiro
4.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203518

RESUMO

Accumulating evidence shows that the abnormal increase in the mortality of intestinal epithelial cells (IECs) caused by apoptosis, pyroptosis, and necroptosis is closely related to the function of mucous membrane immunity and barrier function in patients with ulcerative colitis (UC). As a procedural death path that integrates the above-mentioned many deaths, the role of PANoptosis in UC has not been clarified. This study aims to explore the characterization of PANoptosis patterns and determine the potential biomarkers and therapeutic targets. We constructed a PANoptosis gene set and revealed significant activation of PANoptosis in UC patients based on multiple transcriptome profiles of intestinal mucosal biopsies from the GEO database. Comprehensive bioinformatics analysis revealed five key genes (ZBP1, AIM2, CASP1/8, IRF1) of PANoptosome with good diagnostic value and were highly correlated with an increase in pro-inflammatory immune cells and factors. In addition, we established a reliable ceRNA regulatory network of PANoptosis and predicted three potential small-molecule drugs sharing calcium channel blockers that were identified, among which flunarizine exhibited the highest correlation with a high binding affinity to the targets. Finally, we used the DSS-induced colitis model to validate our findings. This study identifies key genes of PANoptosis associated with UC development and hypothesizes that IRF1 as a TF promotes PANoptosome multicomponent expression, activates PANoptosis, and then induces IECs excessive death.


Assuntos
Colite Ulcerativa , Colite , Humanos , Colite Ulcerativa/genética , Apoptose , Biópsia , Bloqueadores dos Canais de Cálcio
5.
Int Immunopharmacol ; 101(Pt B): 108336, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34768127

RESUMO

BACKGROUND: Research on acetylation modification and its modification sites will be of great significance for revealing the mechanism of disease and developing new targeted medicines. In this study, we aim to construct a complete atlas of acetylome in the DSS-induced ulcerative colitis mice model (UC model) METHODS: A high-resolution mass spectrometry-based quantitative approach was employed to identify lysine-acetylated proteins and acetylation sites. Bioinformatics analysis and in vitro experiments verified anti-inflammatory effects of HSP90B1-K142ac. RESULTS: 2597 acetylation events and 1914 sites were quantified, highlighting 140 acetylation site changes in the colitis colon tissue. 91 acetylation sites in 75 proteins were up-regulated, and 49 acetylation sites in 39 proteins were down-regulated in the UC models. The differentially acetylated proteins mainly consisted of non-histone proteins located in the cytoplasm and mitochondria. KEGG and protein-protein interaction networks analysis showed that the differentially acetylated proteins were enriched in the TCA cycle, fatty acid metabolism, and protein processing in the endoplasmic reticulum. 68% of the differentially metabolized enzymes have a down-regulated trend in acetylation levels. The acetylation level of lysine 142 in HSP90B1 was found to be obvious in the UC colon, and point mutation of HSP90B1-K142ac would result in the decreasing secretion of TNF-α and IL-2 in LPS-stimulated cultured cells. CONCLUSION: Our work built a complete atlas of acetylome and revealed the potential role of metabolic enzymes and heat shock proteins in DSS-induced colitis.


Assuntos
Colite Ulcerativa/metabolismo , Proteínas de Choque Térmico/metabolismo , Acetilação , Animais , Colite Ulcerativa/tratamento farmacológico , Biologia Computacional , Sulfato de Dextrana , Modelos Animais de Doenças , Humanos , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Proteômica
6.
Artigo em Inglês | MEDLINE | ID: mdl-32904439

RESUMO

OBJECTIVES: To study how thermal energy is converted after moxibustion at local skin from the view of mitochondrial respiratory chain and its key regulatory elements of sirtuins 1 (SIRT1) and sirtuins 3 (SIRT3). METHODS: Two moxibustion temperatures usually used in clinical practice (38°C and 46°C) were applied to Zusanli (ST36) acupoint for 30 minutes in C57BL/6J mice. Local skin samples were harvested at 30 min and 72 h after moxibustion intervention, respectively. The activity of mitochondrial respiratory chain complexes I-V was detected by spectrophotometry. The expression of SIRT1 and SIRT3 protein was detected by immunofluorescence staining or western blot. RESULTS: Moxibustion at 38°C triggered more significant increase of mitochondrial respiratory chain complexes I-V expression. However, the protein expression of SIRT1 and SIRT3 at 46°C showed more obvious enhancement. In addition, the effect of mitochondrial respiratory chain complexes I-V activity on local skin of ST36 acupoint was more obvious at 30 min after moxibustion, while the expression of SIRT1 and SIRT3 protein was more significant at 72 h after moxibustion. CONCLUSION: Mitochondrial respiratory chain and its key regulatory element proteins SIRT1 and SIRT3 play important role in the initial process of thermal energy conversion stimulated by different moxibustion temperatures in local skin.

7.
Shanghai Kou Qiang Yi Xue ; 27(6): 574-578, 2018 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-30899935

RESUMO

PURPOSE: The aim of this study was to evaluate the cushion property of mouthguards when the impact object came from different directions. METHODS: A 3D finite element model of upper central incisor, periodontal ligament and alveolar bone was developed based on cone-beam CT (CBCT) images of a plastic teeth model. The mouthguards were modeled in 5 different thickness (T: 0, 1.5, 3, 4.5 and 6 mm) and a nonlinear dynamic impact analysis, in which the finite element models were collided by a steel ball from different directions (D: angles between the impact direction and the long axis of tooth were 30°, 60°, 90°, 120°, respectively), was performed. The stress cushion efficiency was calculated. RESULTS: The stress cushion efficiency of the mouthguards varied with different thicknesses and impact directions. When T=1.5 mm and 3 mm, the stress cushion efficiency was minimal as D=60° and maximal as D=120°. However, when T=4.5 mm and 6 mm, the stress cushion efficiency was minimal as D=90° and maximal as D=30°. Moreover, the stress cushion efficiency of mouthguards improved with the increasing thickness in each impact direction. CONCLUSIONS: The impact direction affects the stress cushion efficiency of mouthguards, which however is influenced by the thickness of mouthguards.


Assuntos
Protetores Bucais , Análise do Estresse Dentário , Análise de Elementos Finitos , Incisivo , Modelos Dentários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...