Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 9: 857044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032282

RESUMO

Buffalo meat is of good quality because it is lean and tender, and could bring significant cardiovascular benefits. The underlying difference in muscle development and meat quality is a complex and precisely orchestrated process which has been demonstrated to be regulated by long non-coding RNAs (lncRNAs). However, the regulatory role of lncRNAs in the growth and development of buffalo skeletal muscle is still unclear. In this study, the Ribo-Zero RNA-Seq method was used to explore the lncRNA expression profiles of buffalo myoblasts during the proliferation and differentiation phases. A specific set of 9,978 lncRNAs was found. By comparing the expression profiles of lncRNAs, it was found that there were 1,576 differentially expressed lncRNAs (DELs) during buffalo myoblast differentiation. Twelve DELs were chosen and subsequently verified in eight different buffalo tissues during fetal and adult stages by using qPCR. Gene11007 was found to be one of the most down-regulated lncRNAs during buffalo myoblasts differentiation and it was subsequently characterized. EdU, CCK-8, qPCR and western blotting assays showed that gene11007 promoted the proliferation of buffalo myoblasts but it had no effect on cell differentiation. Our research may enrich the genome annotations of buffalo and provide a new molecular target for the in-depth understanding of the regulation of lncRNAs in skeletal muscle.

2.
Genes (Basel) ; 13(8)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36011378

RESUMO

Adipogenesis is a complex and precisely orchestrated process mediated by a series of adipogenic regulatory factors. Recent studies have highlighted the importance of microRNAs (miRNAs) in diverse biological processes, most specifically in regulating cell differentiation and proliferation. However, the mechanisms of miRNAs in adipogenesis are largely unknown. In this study, we found that miR-107 expression was higher in bovine adipose tissue than that in other tissues, and there was a downregulation trend during adipocyte differentiation. To explore the function of miR-107 in adipocyte differentiation, agomiR-107 and antiagomiR-107 were transfected into bovine adipocytes, respectively. Oil Red O staining, CCK-8, EdU assays, RT-qPCR, and Western blotting were performed, and the results showed that overexpressed miR-107 significantly suppressed fat deposition and adipocyte differentiation, while knockdown of miR-107 promoted fat deposition and adipocytes differentiation. In addition, through bioinformatics analysis, luciferase reporter assays, RT-qPCR, and Western blotting, we identified apolipoprotein 2 (APOC2) as a target of miR-107. Transfection of siRNA-APOC2 into adipocytes led to suppression in adipocyte differentiation and proliferation, suggesting a positive role of APOC2 in bovine lipogenesis. In summary, our findings suggested that miR-107 regulates bovine adipocyte differentiation and lipogenesis by directly targeting APOC2, and these results. These theoretical and experimental basis for future clarification of the regulation mechanism of adipocyte differentiation and lipogenesis. Moreover, for the highly conserved among different species, miR-107 may be a potential molecular target to be used for the treatment of lipid-related diseases in the future.


Assuntos
Adipogenia , MicroRNAs , Adipócitos/metabolismo , Adipogenia/genética , Animais , Apolipoproteína C-II/metabolismo , Bovinos , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Gene ; 825: 146435, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35301069

RESUMO

Mammalian muscle development is regulated by complex gene networks at the molecular level. The revelation of gene regulatory mechanisms is an important basis for the study of muscle development and molecular breeding. To analyze the excellent meat performance of Pinan cattle at the molecular level, we performed high-throughput RNA sequencing to analyze the key regulatory genes that determine the muscle quality traits in Pinan cattle (n = 3) and Nanyang cattle (n = 3). We identified 57 differentially expressed genes in muscle tissue of Pinan cattle compared to that of Nanyang cattle, including 32 upregulated and 25 downregulated genes. GO enrichment analysis showed that these genes were significantly enriched in 'molecular function', including voltage-gated ion channel activity, calcium channel activity and calcium ion binding, and KEGG pathway analysis results revealed that adrenergic signaling in cardio myocytes, cell adhesion molecules and inositol phosphate metabolism pathway were significantly enriched. We identified the reliability of RNA-Seq data through RT-qPCR. Meanwhile, we found that GSTA3, PLCB1 and ISYNA1 genes are highly expressed in muscle tissue of Pinan cattle, and these genes play important roles in PI3K/Akt, MEK1/2-ERK and p53-ISYNA1 signaling pathway. In summary, our results suggested that these differentially expressed genes may play important roles in muscle development in Pinan cattle. However, the functions and mechanism of these significantly differential expressed genes should be investigated in future studies.


Assuntos
Fosfatidilinositol 3-Quinases , Transcriptoma , Animais , Bovinos/genética , Perfilação da Expressão Gênica/métodos , Mamíferos/genética , Músculos , Fosfatidilinositol 3-Quinases/genética , RNA Mensageiro/genética , Reprodutibilidade dos Testes
4.
Gene ; 784: 145594, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33766704

RESUMO

Analysing the molecular regulation mechanism of fat deposition in yellow cattle can provide a theoretical basis for the breeding of excellent beef cattle. ANGPTL8 (angiopoietin-like protein 8) promotes the formation of lipid droplets during adipocyte differentiation. To explore the promoter active region of ANGPTL8 and predict potential transcription factors, we further provide a theoretical basis for the functional analysis and regulatory mechanism of ANGPTL8 in adipogenesis. The promoter region of bovine ANGPTL8 was cloned by overlap extension PCR. Online software was used to predict potential transcription factor binding sites, and it identified PPARγ, SREBP1, C/EBPα, and Znf423 transcription factor binding sites in ANGPTL8 promoter region. A luciferase reporter gene vector which contained different deletion fragments of the ANGPTL8 promoter was constructed. Then, the vectors were cotransfected into 293 T cells with the internal control plasmid pRL-TK by cationic liposomes, and the relative fluorescence intensity was detected by a microplate reader. The results of the luciferase activity analysis showed that the core promoter area of ANGPTL8 was in the -885/-227 bp region of the 5' flanking sequence, while just two SREBP1 binding sites occurred in this area. When SREBP1 was knocked down by siRNA, the expression level of ANGPTL8 was reduced, and we speculated that SREBP1 may be an important transcription factor regulating ANGPTL8 transcription.


Assuntos
Proteínas Semelhantes a Angiopoietina/química , Proteínas Semelhantes a Angiopoietina/genética , Biologia Computacional/métodos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Animais , Sítios de Ligação , Cruzamento , Bovinos , Clonagem Molecular , Regulação da Expressão Gênica , Células HEK293 , Humanos , Regiões Promotoras Genéticas , Software , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...