Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Talanta ; 278: 126540, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39003837

RESUMO

Accurate quantitative elemental and isotope analysis of nanoparticles at the single-particle level is crucial for better understanding their origin, properties and behaviors. Single particle inductively coupled plasma-mass spectrometry (spICP-MS) has emerged as a promising technique for nanoparticle analysis. However, challenges persist in obtaining accurate and consistent element profiles and ratios for small-sized nanoparticles by conventional quadrupole (QMS) or time-of-flight mass analyzers (TOF-MS) due to their low level and transient nature. In this paper, we present a novel analytical method for single nanoparticle analysis using multiple collector ICP-MS (MC-ICP-MS) combined with a modern high-speed digital oscilloscope. The single particle events are acquired using an "event-triggered signal capture" (ETSC) technique, which enables the simultaneously capture and visualization of multiple isotopes of transient individual particle profiles with nanosecond time resolution. This greatly facilitates precise and efficient analysis of nanoparticles. The minimum detectable particle size is calculated to be as small as 8 nm (∼1 ag 109Ag) for AgNPs. Based on the 109/107Ag ratios obtained from 2000 particles, the precisions of 109/107Ag ratio measurements on 20 nm, 40 nm, 60 nm, 80 nm and 100 nm were approximately 0.086 (SD), 0.063 (SD), 0.051 (SD), 0.040 (SD), and 0.029 (SD), which is limited by counting statistics of the isotopic signals. Furthermore, the achieved standard error of 109/107Ag can be reduced to sub-permil level (0.7 ‰) even for the measurement of 20 nm AgNPs (N = 17,000). These results demonstrate that the ETSC provides a unique method for isotope analysis of single particles, holding great potential for enhancing our understanding of nanoparticles.

2.
Molecules ; 28(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37175253

RESUMO

An atmospheric pressure glow discharge ionisation source was constructed and utilized to study the dopamine (DA) oxidation process coupling with mass spectrometry. During the DA oxidation process catalysed by polyphenol oxidase (PPO), six cationic intermediates were directly detected by the atmospheric pressure glow discharge mass spectrometry (APGD-MS). Combined with tandem mass spectrometry, the structures of the dopamine o-semiquinone radical (DASQ) and leukodopaminochrome radical (LDAC●) intermediates and structures of the isomers of dopaminochrome (DAC) and 5,6-dihydroxyindole (DHI) were further characterised with the introduction of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and deuterium oxide (D2O) to APGD-MS. Meanwhile, UV-Vis studies confirmed the important role of PPO in catalyzing the DA oxidation reaction. Based on APGD-MS studies, a possible mechanism could be proposed for DA oxidation catalysed by PPO. Furthermore, APGD-MS could provide possibilities for the effective detection and characterisation of short-lived intermediates, even in complicated systems.

3.
Anal Chem ; 95(15): 6271-6278, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37017609

RESUMO

Sensitive and high-throughput analysis of trace elements in volume-limited biological samples is highly desirable for clinical research and health risk assessments. However, the conventional pneumatic nebulization (PN) sample introduction is usually inefficient and not well-suited for this requirement. Herein, a novel high-efficiency (nearly 100% sample introduction efficiency) and low-sample-consumption introduction device was developed and successfully coupled with inductively coupled plasma quadrupole mass spectrometry (ICP-QMS). It consists of a micro-ultrasonic nebulization (MUN) component with an adjustable nebulization rate and a no-waste spray chamber designed based on fluid simulation. The proposed MUN-ICP-QMS could achieve sensitive analysis at a low sampling rate of 10 µL min-1 with an extremely low oxide ratio of 0.25% where the sensitivity is even higher comparing to PN (100 µL min-1). The characterization results indicate that the higher sensitivity of MUN is attributed to the smaller aerosol size, higher aerosol transmission efficiency, and improved ion extraction. In addition, it offers a fast washout (20 s) and reduced sample consumption (as low as 7 µL). The absolute LODs of the studied 26 elements by MUN-ICP-QMS are improved by 1-2 orders of magnitude compared with PN-ICP-QMS. The accuracy of the proposed method was validated by the analysis of human serum, urine, and food-related certified reference materials. Furthermore, preliminary results of serum samples from patients with mental illnesses demonstrated its potential in the field of metallomics.


Assuntos
Oligoelementos , Ultrassom , Humanos , Espectrometria de Massas/métodos , Oligoelementos/análise , Análise Espectral , Limite de Detecção
4.
Talanta ; 257: 124339, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801565

RESUMO

In this study, a novel sensitive method for As determination by atomic fluorescence spectrometry was developed based on UV-assisted liquid spray dielectric barrier discharge (UV-LSDBD) plasma-induced vapor generation. It was found that prior-UV irradiation greatly facilitates As vapor generation in LSDBD likely because of the increased generation of active substances and the formation of As intermediates with UV irradiation. The experimental conditions affecting the UV and LSDBD processes (such as formic acid concentration, irradiation time, the flow rates of sample, argon and hydrogen) were optimized in detail. Under the optimum conditions, As signal measured by LSDBD can be enhanced by about 16 times with UV irradiation. Furthermore, UV-LSDBD also offers much better tolerance to coexisting ions. The limit of detection was calculated to be 0.13 µg L-1 for As, and the relative standard deviation of the repeated measurements was 3.2% (n = 7). The accuracy and effectiveness of this new method were further verified by the analysis of simulated natural water reference sample and real water samples. In this work, UV irradiation was utilized for the first time as an enhancement strategy for PIVG, which opens a new approach for developing green and efficient vapor generation methods.

5.
Anal Methods ; 14(28): 2782-2792, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35815347

RESUMO

Multi-isotope systems have shown great application potential in tracing geological and environmental processes. In order to obtain the isotopic composition of multiple elements of interest, the common protocol is to separate each element from the matrix by independent procedures, which has some limitations, including poor efficiency, being time-consuming, requiring large samples and being unsuitable for rare samples (e.g., meteorite, lunar soil and atmospheric aerosol samples). In this study, we present an integrated and optimized one-step method to separate Cu, Fe, Zn and Cd from complex matrix elements using the AG MP-1M anion exchange resin. By experimentally optimizing the resin volume, eluent concentration and eluent amount, these target elements can be effectively separated from the matrix elements, such as Cu separation from Ti and Co, Zn separation from Fe and Cd, and Cd separation from Sn. The recoveries of Cu, Fe, Zn and Cd were 100.1 ± 0.8% (2SD, n = 3), 99.8 ± 0.7% (2SD, n = 3), 100 ± 0.8% (2SD, n = 3) and 99 ± 1% (2SD, n = 3), respectively. Moreover, the resolution (R) between the elements of interest and interfering elements was in the range of 1.8-28.1. The process blanks of Cu, Fe, Zn and Cd were 1-1.6 ng, 62-70 ng, 2.1-3 ng and 66-74 pg, respectively. The obtained isotope ratios for the standard reference materials agreed well with the published values. Meanwhile, we have reported the Cu, Fe and Zn isotope ratios of six soil and sediment standard reference materials, namely NIST 2711a, GSS-1, GSD-5a, GSD-7a, GSD-12 and GSD-23, for the first time. These new data can be used for the intercalibration and quality control of soils and sediments in other laboratories. The one-step separation of Cu, Fe, Zn and Cd shows obvious economic and efficiency advantages, making it suitable for the simultaneous separation of multiple elements of interest in geological samples.


Assuntos
Cádmio , Isótopos , Cádmio/análise , Isótopos/análise , Solo , Análise Espectral , Zinco/análise
6.
Anal Chim Acta ; 1215: 339980, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35680339

RESUMO

Cd isotopes have provided a powerful tool for better understanding Cd geochemical cycling in soil, water and biological systems. Conventional solution-based MC-ICPMS techniques used for Cd isotopic analysis typically requires time-consuming purification, which greatly limits the wide application of Cd isotope. In this work, a fast, highly sensitive and cost-effective Cd isotopic analysis method has been developed based on plasma electrochemical vapor generation (PEVG) coupled with MC-ICPMS. PEVG enhances sensitivity by more than 6 times compared with conventional pneumatic nebulization (PN) system, allowing Cd analysis to be carried out with samples as low as âˆ¼ 13 ng. Usefully, the tolerance level for organic resin materials and matrix elements (Sn/In/Pd/Zr/Mo/Zn:Cd > 250:1) is greatly improved because of the excellent matrix separation capability inherent to PEVG. This allows simplification of the complex and time-consuming ion-exchange chromatography purification process, achieving a reduction of time by > 20 times compared to conventional two-step Cd purification process. The precision and accuracy of this method were first assessed by measuring NIST 3108 and BGEG-Cd standard under optimum conditions (δ114/110Cd of 0.00 ± 0.06‰ and -1.00 ± 0.06‰ (2sd, n = 25)). The method was also successfully applied to sensitive and fast determination of δ114/110Cd in various reference materials (soil, sediment, and basalt) and environmental samples (pyrite, galena, sphalerite, soils and tap water), validating the applicability of the proposed technique. Owing to the sensitivity, selectivity, low power, and low gas consumption of the PEVG, the proposed PEVG-MC-ICPMS technique provides a much faster and cost-effective approach for the accurate measurement of Cd isotopic compositions in low-Cd complex samples.


Assuntos
Cádmio , Isótopos , Cádmio/análise , Gases/análise , Isótopos/análise , Espectrometria de Massas/métodos , Solo , Água/análise
7.
Anal Chem ; 94(10): 4455-4462, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35229593

RESUMO

A novel simple electrothermal desolvation-enhanced dielectric barrier discharge plasma-induced vapor generation (ETD-DBD-PIVG) method has been developed for sensitive Sb determination by atomic fluorescence spectrometry (AFS). In our proposed ETD-DBD-PIVG, 20 µL sample solution was dried first; then, the resulting solution residue was directly converted into molecular volatile species efficiently through the interactions with hydrogen-doped DBD plasma; and finally, it was transported to AFS for detection. It was found that the desolvation process could greatly enhance Sb vapor generation, and the Sb fluorescence signal intensity is almost independent of its speciation, where comparable sensitivity is achieved for Sb(III) and Sb(V), enabling efficient total Sb detection without pre-reduction. Influencing parameters were evaluated in detail, including heating time, discharge gap, solution pH, and flow rates of argon and hydrogen, as well as coexisting ion interference. Under optimized conditions, the limit of detection was calculated as 0.86 µg L-1 (17.2 pg) for Sb. The accuracy of the proposed method was validated by the analysis of certified reference materials of simulated natural water samples and several river water samples. Compared with conventional hydride generation, the new ETD-DBD-PIVG offers an alternative green vapor generation technique with several advantages: (1) it eliminates the use of a sample flow system (e.g., no use of any syringe or peristaltic pump); instead, 20 µL of a sample is directly pipetted onto the glass plate for analysis; (2) it greatly simplifies the sample pretreatment steps as no pre-reduction process is needed; (3) it is sensitive and suitable for volume-limited sample analysis: efficient Sb vapor generation without chemical reducing reagents in ETD-DBD-PIVG enables Sb detection with an absolute limit at the picogram level. All the results demonstrate that the proposed method provides a simple, green, and sensitive method for Sb determination and it can also be extended to other elements such as Cd and As.


Assuntos
Antimônio , Água Doce , Antimônio/análise , Água Doce/análise , Hidrogênio , Espectrometria de Fluorescência/métodos , Água
8.
J Hazard Mater ; 429: 128317, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35086037

RESUMO

The environmental fate of antimony (Sb) is often strongly affected by adsorption, and the Sb isotope fractionation mechanism during adsorption has not been reported. Four batch experiments (kinetic, isothermal, effect of pH, and effect of coexisting anions) were conducted to evaluate the mechanism of Sb(V) adsorption to γ-Al2O3 and the fractionation of Sb isotopes. Extended X-ray absorption fine structure (EXAFS) analyses show Sb(V) adsorption on γ-Al2O3 occurs via outer-sphere surface complexation. The triple-layer model (TLM) effectively predicted the theoretical Sb adsorption amount under different pH conditions. The Sb isotope fractionation in the adsorption process can be divided into an initial kinetic stage (Rayleigh model, αadsorbed-aqueous = 0.99975 ± 0.00003) and subsequent isotopic equilibrium stage due to isotope exchange; however, no significant equilibrium isotope fractionation (Δ123Sbaqueous-adsorbed = ~0 ± 0.08‰) was evident by the end of the experiments. We propose the lack of significant equilibrium isotope fractionation in the effect of pH and isothermal experiments is due to Sb forming an outer-sphere complex on γ-Al2O3. This study reveals Sb equilibrium isotope fractionation does not occur during Sb(V) adsorption onto γ-Al2O3, providing a reference for the future study of Sb isotopes and furthering understanding of the Sb isotope fractionation mechanism.

9.
Anal Chem ; 93(49): 16393-16400, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34859666

RESUMO

In the present work, a novel, simple, and sensitive method for the direct determination of trace Sb in water samples was developed based on hydrogen-doped solution anode glow discharge-optical emission spectrometry (SAGD-OES). It was found that the vapor generation and excitation of Sb occurred simultaneously in the SAGD, contributing to the significant improvement in the sensitivity of Sb as compared with normal pure He-operated SAGD or solution cathode glow discharge. Besides, the proposed hydrogen-doped SAGD-OES could be operated even at pH = 14, which could reduce the interference of coexisting ions as many metal ions could be precipitated and removed. Our results demonstrated that the proposed method offered good tolerance to the interferences of Li, Na, Ca, Mg, Fe, Ni, Mn, and Zn ions even at a concentration of 50 mg L-1. Under optimized conditions, the limit of detection of Sb was 0.85 µg L-1, which was comparable to that of microplasma sources coupled with conventional hydride generation. The linearity of the Sb calibration curve reached R2 > 0.999 in the 5-5000 µg L-1 range. Finally, the accuracy of the proposed method was validated by the determination of certified reference materials [GSB 07-1376-2001 (1) and (2))] and real water samples. The proposed low-power (6 W), green, sensitive, rapid, and robust method provides a promising approach for on-site trace Sb analysis and may also be extended to other elements.


Assuntos
Antimônio , Hidrogênio , Eletrodos , Análise Espectral , Água
10.
PLoS One ; 16(10): e0258274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34644313

RESUMO

OBJECTIVE: We aim to estimate the total factor productivity and analyze factors related to the Chinese government's health care expenditure in each of its provinces after its implementation of new health care reform in the period after 2009. MATERIALS AND METHODS: We use the Malmquist DEA model to measure efficiency and apply the Tobit regression to explore factors that influence the efficiency of government health care expenditure. Data are taken from the China statistics yearbook (2004-2020). RESULTS: We find that the average TFP of China's 31 provincial health care expenditure was lower than 1 in the period 2009-2019. We note that the average TFP was much higher after new health care reform was implemented, and note this in the eastern, central and western regions. But per capita GDP, population density and new health care reform implementation are found to have a statistically significant impact on the technical efficiency of the provincial government's health care expenditure (P<0.05); meanwhile, region, education, urbanization and per capita provincial government health care expenditure are not found to have a statistically significant impact. CONCLUSION: Although the implementation of the new medical reform has improved the efficiency of the government's health expenditure, it is remains low in 31 provinces in China. In addition, the government should consider per capita GDP, population density and other factors when coordinating the allocation of health care input. SIGNIFICANCE: This study systematically analyzes the efficiency and influencing factors of the Chinese government's health expenditure after it introduced new health care reforms. The results show that China's new medical reform will help to improve the government's health expenditure. The Chinese government can continue to adhere to the new medical reform policy, and should pay attention to demographic and economic factors when implementing the policy.


Assuntos
Governo , Reforma dos Serviços de Saúde/economia , Gastos em Saúde , China , Análise de Regressão
11.
Anal Chem ; 93(39): 13351-13359, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34558890

RESUMO

An accurate, rapid but cheap, and portable method for monitoring of serum lithium (Li) is highly desirable for mental patients who take Li medicine for treatment. Conventional techniques are usually bulky, costly, and cannot provide on-site real-time measurements. Herein, a miniaturized, reliable, cost-effective, and portable optical emission method for rapid and sensitive determination of serum Li was developed based on a combination of miniaturized ultrasonic nebulization (MUN) and a low-power (≈22 W) atmospheric-pressure air-sustained discharge (APAD) excitation source. The proposed method eliminates the use of any compressed gas or pump and can achieve serum Li detection within 40 s with low sample consumption (less than 20 µL serum). Except for dilution with water, no extra treatment is needed for serum Li analysis by MUN-APAD-OES. In addition, it offers a significant advantage of good tolerance to the coexisting high concentration of Na, K, Ca, and Mg, which is in contrast with the obvious matrix effect encountered in conventional inductively coupled plasma optical emission spectrometry (ICP-OES). Different operating parameters affecting the performance of MUN-APAD-OES were evaluated. Under optimized conditions, the detection limit of Li (670.8 nm) was calculated to be 0.6 µg L-1 (6 µg L-1 in serum). Finally, the accuracy of the proposed method was validated by the analysis of two certified reference materials (Seronorm serum L-1 and L-2 RUO), six real human serum samples, and eight real animal serum samples. All of the results indicate that the low-cost and low-power MUN-APAD-OES provides a promising reliable method for on-site serum Li measurement and may also be extended to other elements.


Assuntos
Lítio , Ultrassom , Humanos , Alta do Paciente
12.
Anal Chim Acta ; 1178: 338799, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482868

RESUMO

In this study, a simple and effective method for accurate determination of lithium in brine samples was developed by the combination of laser induced breakdown spectroscopy (LIBS) and convolutional neural network (CNN). Our results clearly demonstrate that the use of CNN could efficiently overcome the complex matrix effects, and thus allows for on-site Li quantitative determination in brine samples by LIBS. Specifically, two CNN models with different input data (M-CNN with matrix emission lines, and DP-CNN with double Li lines) were constructed based on the primary matrix features on spectrum and Boltzmann equation, respectively. It was observed that DP-CNN model could greatly improve the accuracy of Li analysis. We also compared the quantitative analysis capabilities of DP-CNN model with partial least squares regression (PLSR) and principal component analysis-support vector regression (PCA-SVR) model, and the results clearly showed DP-CNN offers the best quantification results (higher accuracy and less matrix interference). Finally, five real brine samples were successfully analyzed by the proposed DP-CNN model, confirming by the average absolute error of the prediction of 0.28 mg L-1 and the average relative error of 3.48%. These results clearly demonstrate that input data plays an important role in the training of CNN model in LIBS analysis, and the proposed DP-CNN provides an effective approach to solve the matrix effects encountered in LIBS for Li measurement in brine samples.


Assuntos
Lítio , Redes Neurais de Computação , Lasers , Sais , Análise Espectral
13.
Anal Chem ; 93(19): 7196-7203, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33966373

RESUMO

A novel, simple, cost-effective, reliable, and practical automatic column chromatography separation device capable of simultaneously purifying samples for radiogenic and non-traditional stable isotope analysis has been developed. The device avoids the use of any pump and features eluent driving by the siphon effect (gravity) and quantitative control by infrared droplet counting. Several factors affecting the control of droplets were investigated, including types and concentrations of eluents and the height of the liquid level. Results showed that accurate dripping of the eluent could be readily achieved by controlling the number of droplets under selected conditions. The separation performance of the device was first demonstrated by the elution of Sr and Cd in synthetic matrix solutions. The recoveries of Sr and Cd samples were better than 87.6 and 95.0%, respectively, and the whole procedure blank was about 0.3 ng for Sr and 0.1 ng for Cd. Finally, the reliability of the device was further validated by the purification of Sr and Cd from different geological reference materials (NIST 2711a, Nod-A-1, BCR-2, and BHVO-2). The determined Cd and Sr isotope values agree well with their reference values within the uncertainty range. All these results clearly demonstrate the reliability and practicability of the proposed device, which provides a promising method for the automated purification of isotope samples.


Assuntos
Cromatografia , Isótopos , Metais , Reprodutibilidade dos Testes
14.
BMC Infect Dis ; 21(1): 126, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509121

RESUMO

BACKGROUND: To observe the effect of corticosteroids in the treatment of children with refractory Mycoplasma pneumoniae pneumonia (RMPP) under different doses, to summarize the clinical features of children treated with glucocorticoid pulse therapy. METHODS: The clinical data of 125 children with RMPP hospitalized in Tianjin Children's Hospital from September 2018 to October 2019 were retrospectively analyzed. They were divided into two groups according to the dose of hormone. Compare the clinical features, laboratory findings, and imaging between the two groups, and use meaningful related indicators as ROC curves to find reference indicators for pulse therapy. RESULTS: (1) The median age of the group II was older than that of the group I(P < 0.05). (2) We found more severe presentations, higher incidence of extra-pulmonary complications and more serious radiological findings in group II, which needed oxygen more often, higher the hormone, higher usage rate of gamma globulin, higher usage rate of bronchoscopy, and higher incidence of plastic bronchitis(P < 0.05). (3) WBC, CRP, LDH, FER, D-D dimer, APTT, TT, PCT, IL-6 and the percentage of neutrophils in peripheral blood in Group II were higher than those in Group I(P < 0.05). (4) In ROC curve analysis, CRP, LDH, FER, and neutrophils of leukocyte classification were independent related factors that could be used as valuable predictors of methylprednisolone pulse therapy for RMPP in children. The cut-off values were CRP44.45 mg/L, LDH590IU/L, FER411ng/L, and neutrophils in leukocyte classification were 73.75%, respectively. CONCLUSION: CRP ≥ 44.45 mg/L, LDH ≥ 590 IU/L, FER ≥ 411 ng/L, neutrophil≥73.75%, lung consolidation, and pleural effusion may be predictors that guide the treatment of RMPP with pulse dose of GC.


Assuntos
Glucocorticoides/administração & dosagem , Mycoplasma pneumoniae , Pneumonia por Mycoplasma/tratamento farmacológico , Adolescente , Biomarcadores/sangue , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pneumonia por Mycoplasma/diagnóstico , Pneumonia por Mycoplasma/patologia , Pulsoterapia , Curva ROC , Recidiva , Estudos Retrospectivos , Fatores de Risco
15.
Sci Total Environ ; 761: 143262, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33218811

RESUMO

Consumption of rice (Oryza sativa) grain is a major pathway by which humans are exposed to Cd, especially in non-smoking Asian populations. Although the stable isotope signatures of Cd offer a potential tool for tracing its sources, little is known about the isotopic fractionation of Cd across the entire soil-rice-human continuum. Cadmium isotope ratios were determined in field soils, rice grain, and human urine collected from two Cd-contaminated regions in southern China. Additionally, Cd isotopic fractionation in rice plants was investigated using two transgenic plants differing in Cd uptake and accumulation. Analysis of isotope ratios revealed a preferential enrichment of the heavy Cd isotopes from soil to rice grain (δ114/110Cdgrain-soil = +0.40‰) and from grain to urine (δ114/110Cdurine-grain = +0.40‰) in both regions. The first increase was mainly caused by partitioning between the soil solid phase and the soil solution, with heavier Cd preferentially enriching in the soil solution. Within the rice plant, we identified multiple processes that alter the isotope ratio, but the net effect throughout the plant was comparatively small. Cd fractionation in humans is presumably due to the preferential enrichment of heavier Cd isotopes by metal transporters DMT1 and ZIP8 (responsible for the absorption of Cd into body from the foods). These findings provide important insights into the Cd isotopic fractionation through the soil-rice-human continuum and are helpful for tracing the sources of Cd.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , China , Humanos , Isótopos , Solo , Poluentes do Solo/análise
16.
BMC Infect Dis ; 20(1): 534, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32698769

RESUMO

BACKGROUND: To analyze the clinical characteristics of Mycoplasma pneumoniae pneumonia with hypoxia in children, and identify the associated risk factors of hypoxia in MPP. METHODS: A retrospective case-control study was performed on 345 children with Mycoplasma pneumoniae pneumonia (MPP) admitted to our hospital wards from January 2017 to June 2019. They were divided into three groups, namely MPP with hypoxia, refractory Mycoplasma pneumoniae pneumonia (RMPP), and general Mycoplasma pneumoniae pneumonia (GMPP). The clinical features, laboratory findings, imaging, and management were collected and compared in the three groups. RESULTS: The MPP with hypoxia patients (n = 69) had longer disease duration, a higher extra-pulmonary complications rate, and more severe radiological abnormalities (P < 0.05). They also needed more complicated treatments (P < 0.05). Meanwhile, the levels of white blood cell count (WBC), C-reactive protein (CRP), lactic dehydrogenase (LDH), interleukin (IL)-6, ferritin, D-dimer, fibrinogen (FG), alanine aminotransferase (ALT) and the percentage of neutrophils in the MPP with hypoxia group were significantly higher than those in the RMPP group and the GMPP group (P < 0.05). In ROC curve analysis, the percentage of neutrophils, WBC, CRP, LDH, IL-6, ferritin, D-dimer, and ALT were contributed to identify the MPP with hypoxia patients. Multivariate logistic regression analysis revealed that ferritin> 174.15 ng/mL, IL-6 > 25.475 pg/ml, and pleural effusion were significantly associated with the incidence of hypoxia in MPP (P < 0.01). CONCLUSION: MPP with hypoxia patients presented more serious clinical manifestations. Ferritin> 174.15 ng/mL, IL-6 > 25.475 pg/ml and pleural effusion were related risk factors for hypoxia in MPP.


Assuntos
Hipóxia/sangue , Hipóxia/complicações , Mycoplasma pneumoniae , Pneumonia por Mycoplasma/sangue , Pneumonia por Mycoplasma/complicações , Proteína C-Reativa/análise , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Ferritinas/sangue , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Humanos , Interleucina-6/sangue , Contagem de Leucócitos , Masculino , Neutrófilos/metabolismo , Derrame Pleural , Pneumonia por Mycoplasma/microbiologia , Curva ROC , Estudos Retrospectivos , Fatores de Risco
17.
Sci Total Environ ; 728: 138252, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32335403

RESUMO

Dissolved organic matter (DOM) is one of the most active soil components and plays critical direct and indirect roles in heavy metal migration, transformation, bioavailability, and toxicity in soils. In this study, isothermal adsorption/desorption experiments and pot experiments were performed and samples were physically characterized to study the effects of different sources of DOM on adsorption and desorption behavior and bioavailability of Cd and Hg in a plant-soil system. The results showed that microbial DOM promoted Cd and Hg adsorption in soil and decreased Cd and Hg bioavailability to pak choi (Brassica chinensis Linn.). In contrast, straw DOM and farmyard manure DOM decreased Cd and Hg adsorption and improved Cd and Hg migration and bioavailability. These results might be explained by the different types of DOM having different molecular weights and degrees of aromaticity. Cd was more readily desorbed by the soil and was more phytoavailable than Hg. We concluded that exogenous microbial DOM can inhibit Cd and Hg migration and bioavailability in soil but straw DOM and farmyard manure DOM can activate Cd and Hg in soil and promote Cd and Hg accumulation in plants. The results could help in developing rational agricultural fertilization regimes.


Assuntos
Mercúrio , Poluentes do Solo/análise , Adsorção , Disponibilidade Biológica , Cádmio , Solo
18.
Environ Sci Technol ; 53(4): 1863-1873, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30673270

RESUMO

The complex interactions between magnetite and aqueous Fe2+ (Fe2+(aq)) pertain to many biogeochemical redox processes in anoxic subsurface environments. The effect of natural organic matter, abundant in these same environments, on Fe2+(aq)-magnetite interactions is an additional complex that remains poorly understood. We investigated the influence of a model quinone molecule anthraquinone-2,6-disulfonate (AQDS) on Fe2+(aq)-magnetite interactions by systematically studying equilibrium Fe2+(aq) concentrations, rates and extents of AQDS reduction, and structural versus surface-localized Fe(II)/Fe(III) ratios in magnetite under different controlled experimental conditions. The equilibrium concentration of Fe2+(aq) in Fe2+-amended magnetite suspensions with AQDS proportionally changes with solution pH or initial AQDS concentration, but independent of magnetite loadings through the solid concentrations that were studied here. The rates and extents of AQDS reduction by Fe2+-amended magnetite proportionally increased with solution pH, magnetite loading, and initial Fe2+(aq) concentration, which correlates with the corresponding change of reduction potentials for the Fe2+-magnetite system. AQDS reduction by surface-associated Fe(II) in the Fe2+-magnetite suspensions induces solid-state migration of electron equivalents from particle interiors to the near-surface region and the production of nonmagnetic Fe(II)-containing species, which inhibits Fe2+(aq) incorporation or electron injection into the magnetite structure. This study demonstrates the significant influence of quinones on reductive activity of the Fe2+-magnetite system.


Assuntos
Compostos Férricos , Óxido Ferroso-Férrico , Elétrons , Oxirredução , Quinonas
19.
Anal Chem ; 91(1): 928-934, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30520299

RESUMO

A highly efficient liquid spray dielectric barrier discharge (LSDBD) plasma-induced vapor generation technique is developed for the simultaneous determination of selenium, silver, antimony, lead, and bismuth in liquid microsamples (20 µL) by inductively coupled plasma mass spectrometry (ICP-MS). It is demonstrated that the dissolved Se, Ag, Sb, Pb, and Bi ions in solution samples are readily and simultaneously converted to volatile species efficiently by LSDBD plasma-induced chemical processes under similar conditions. It eliminates the use of unstable and expensive reducing reagents, and only formic acid is required in the proposed LSDBD chemical vapor generation technique. It is also worth noting that this is the first report of using plasma-induced chemical processes for the vapor generation of Ag and Bi. The simultaneous sensitive determination of Se, Ag, Sb, Pb, and Bi is realized with a sample volume of only 20 µL and the sample throughput could be as high as 180 samples h-1. The limit of detection (LOD) for simultaneous determination of Se, Ag, Sb, Pb, and Bi is 10 ng L-1 (200 fg), 2 ng L-1 (40 fg), 5 ng L-1 (100 fg), 4 ng L-1 (80 fg), and 3 ng L-1 (60 fg), respectively. The precision of Se, Ag, Sb, Pb, and Bi in the present method is evaluated to be better than 4%. The utility of the proposed technique is demonstrated by the analysis of ultratrace Se, Ag, Sb, Pb, and Bi in archaea cells and single conodont samples.

20.
Anal Chem ; 91(3): 1912-1919, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30592209

RESUMO

A novel interrupted gas flow (IF) technique has been proposed for highly sensitive determination of ultratrace levels of arsenic and antimony in water samples by atmospheric pressure glow discharge (APGD) excitation source coupled with HCl-KBH4 hydride generation (HG). It is demonstrated that the gas flow interruption technique provides a dramatic and reproducible enhancement of emission signals of 1-2 orders of magnitude for As and Sb over conventional continuous gas flow (CF) in APGD. The enhanced analyte emission sensitivities in IF-APGD were investigated from the viewpoint of changes in plasma excitation temperature and analyte density. With eight As lines as the thermometric probe, no measurable change in excitation temperature was found, suggesting that the enhancement is caused by an increase in analyte number density in the plasma immediately following the gas flow interruption. Furthermore, the enhancement factor was found to increase with the time interval in between the gas interruption, supporting an analyte adsorption (or trap)-release mechanism hypothesis. Under optimized conditions, the detection limits (DLs) of IF-APGD mode for As and Sb were calculated to be 0.02 and 0.003 µg L-1, which are, respectively, about 27- and 120-fold improved compared to CF-APGD mode. The linearity of calibration for both As and Sb reached R2 > 0.999 in the 0.1-5 µg L-1 range. The accuracy of the proposed method was validated by the determination of certified reference materials (CRMs), and the results agreed well with the certified values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA