Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Prosthet Dent ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38796354

RESUMO

STATEMENT OF PROBLEM: Excellent optical properties are essential for esthetic dental materials. However, the translucency and color masking ability of zirconia fabricated with nanoparticle jetting (NPJ), a type of printed zirconia, are unknown. PURPOSE: The purpose of this in vitro study was to evaluate the translucency and color masking ability of zirconia fabricated using NPJ. MATERIAL AND METHODS: A total of 90 specimens with thicknesses of 1.5, 1.0, and 0.5 mm were fabricated using high translucent milled zirconia (HT), low translucent milled zirconia (LT), and NPJ. CIELab values (L*, a*, and b*) of the specimens over 7 backgrounds, black, white, VitaB1, VitaA2, VitaA4, gold alloy (Au), and titanium (Ti), were obtained using a spectral radiometer. The relative translucency parameter (RTP) and color difference (∆E) of specimens over VitaB1, VitaA4, Au, and Ti were determined using VitaA2 as the control with the CIEDE2000 color difference equation. The normality of the data distribution was determined using the Shapiro-Wilk test. Differences among groups were analyzed using 2-way analysis of variance and the Student-Newman-Keuls (SNK) post hoc test (α=.05). The ∆E of specimens was analyzed according to perceptibility (∆E=0.8) and acceptability (∆E=1.8) thresholds using the 1 sample t test. The correlation between RTP and ∆E and RTP/∆E and thickness was examined using the Pearson correlation analysis. RESULTS: Statistically significant differences were observed in translucency and color masking ability among HT, LT, and NPJ (P<.05). The RTP value was the lowest for zirconia fabricated with NPJ (P<.001) and highest for HT (P<.001). Monolithic zirconia fabricated with NPJ had lower ∆E values than those of HT and LT for the same thickness and background (P<.05). A positive correlation was found in RTP and ∆E (P<.001). A negative correlation was observed in RTP and thickness (P<.001) and ∆E and thickness across a constant background (P<.001). CONCLUSIONS: Zirconia fabricated with NPJ was less translucent and had a greater color masking ability for discolored backgrounds than HT and LT.

2.
J Cell Mol Med ; 28(10): e18317, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801409

RESUMO

Euphorbiae Humifusae Herba (EHH) is a pivotal therapeutic agent with diverse pharmacological effects. However, a substantial gap exists in understanding its pharmacological properties and anti-tumour mechanisms. This study aimed to address this gap by exploring EHH's pharmacological properties, identifying NSCLC therapy-associated protein targets, and elucidating how EHH induces mitochondrial disruption in NSCLC cells, offering insights into novel NSCLC treatment strategies. String database was utilized to explore protein-protein interactions. Subsequently, single-cell analysis and multi-omics further unveiled the impact of EHH-targeted genes on the immune microenvironment of NSCLC, as well as their influence on immunotherapeutic responses. Finally, both in vivo and in vitro experiments elucidated the anti-tumour mechanisms of EHH, specifically through the assessment of mitochondrial ROS levels and alterations in mitochondrial membrane potential. EHH exerts its influence through engagement with a cluster of 10 genes, including the apoptotic gene CASP3. This regulatory impact on the immune milieu within NSCLC holds promise as an indicator for predicting responses to immunotherapy. Besides, EHH demonstrated the capability to induce mitochondrial ROS generation and perturbations in mitochondrial membrane potential in NSCLC cells, ultimately leading to mitochondrial dysfunction and consequent apoptosis of tumour cells. EHH induces mitochondrial disruption in NSCLC cells, leading to cell apoptosis to inhibit the progress of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mitocôndrias , Análise de Célula Única , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Camundongos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Medicamentos de Ervas Chinesas/farmacologia , Multiômica
3.
J Diabetes Res ; 2023: 7423661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261217

RESUMO

Objective: Deficiencies in klotho are implicated in various kidney dysfunctions including diabetic nephropathy (DN) related to inflammatory responses. Klotho is closely related to inflammatory responses and is a potential target for ameliorating kidney failure. Pyroptosis, an inflammatory form of programmed cell death, is reported to take part in DN pathogenesis recently. This study is aimed at exploring whether and how klotho inhibited podocyte pyroptosis and whether astragaloside IV (AS-IV) protect podocyte through the regulation of klotho. Materials and Methods: SD rat model of DN and conditionally immortalized mouse podocytes exposed to high glucose were treated with AS-IV. Biochemical assays and morphological examination, cell viability assay, cell transfection, phalloidin staining, ELISA, LDH release assay, SOD and MDA detection, MMP assay, ROS level detection, flow cytometry analysis, TUNEL staining assay, PI/Hoechst 33342 staining, immunofluorescence assay, and western blot were performed to elucidate podocyte pyroptosis and to observe the renal morphology. Results: The treatment of AS-IV can improve renal function and protect podocytes exposed to high glucose. Klotho was decreased, and AS-IV increased klotho levels in serum and kidney tissue of DN rats as well as podocytes exposed to high glucose. AS-IV can inhibit DN glomeruli pyroptosis in vivo. In vitro, overexpressed klotho and treatment with AS-IV inhibited pyroptosis of podocytes cultured in high glucose. Klotho knockdown promoted podocyte pyroptosis, and treatment with AS-IV reversed this effect. Furthermore, the overexpression of klotho and AS-IV reduces oxidative stress levels and inhibited NF-κB activation and NLRP3-mediated podocytes' pyroptosis which was abolished by klotho knockdown. In addition, both the ROS inhibitor NAC and the NF-κB pathway inhibitor PDTC can inhibit NLRP3 inflammasome activation. NLRP3 inhibitor MCC950 can inhibit pyroptosis of podocytes exposed to high glucose. Conclusion: Altogether, our results demonstrate that the protective effect of AS-IV in upregulating klotho expression in diabetes-induced podocyte injury is associated with the inhibition of NLRP3-mediated pyroptosis via the NF-κB signaling pathway.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Ratos , Camundongos , Animais , NF-kappa B/metabolismo , Nefropatias Diabéticas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Glucose/farmacologia , Glucose/metabolismo , Podócitos/metabolismo , Inflamassomos/metabolismo , Diabetes Mellitus/metabolismo
4.
Basic Clin Pharmacol Toxicol ; 132(3): 242-252, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36482064

RESUMO

Bone tissue is a common metastatic site of lung cancer, and bone metastasis is characterized by abnormal differentiation and malfunction of osteoclast, and the roles of exosomes derived from lung cancer have attracted much attention. In our study, we found that the level of HOTAIR expression in A549 and H1299 exosomes was higher than those of normal lung fibrocytes. Overexpression of HOTAIR in A549 and H1299 exosomes promoted osteoclast differentiation. Furthermore, A549-Exos and H1299-Exos targeted bone tissues, and bone formation was significantly inhibited in vivo. Mechanistically, exosomal lncRNA HOTAIR promoted bone resorption by targeting TGF-ß/PTHrP/RANKL pathway.


Assuntos
Osteoclastos , RNA Longo não Codificante , Humanos , Diferenciação Celular/genética , Exossomos/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Osteoclastos/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Ligante RANK/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Cell Death Discov ; 8(1): 405, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192384

RESUMO

Osseous metastases of pulmonary carcinoma and the detailed mechanisms remain unclear, and the effects of exosomes (Exos) originated from pulmonary adenocarcinoma cells in this process have received a lot of attentions. Our study revealed that the Exos secreted from A549 cells (A549-Exos) enhanced osteoclastogenesis and osseous resorption in vitro. In addition, A549-Exos showed a targeted effect on bones to enhance osseous resorption in vivo. A549-exosomal miR-328 enhanced osseous resorption via downregulating neuropilin 2 (Nrp-2) expression, and A549-Exos miR-328 inhibitors suppressed osseous resorption in vivo. Therefore, A549-exosomal miR-328 enhances osteoclastogenesis via downregulating Nrp-2 expression, thus A549-Exos miR-328 inhibitors can be used as a potential nanodrug for treating osseous metastases.

6.
Front Pharmacol ; 13: 805984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401159

RESUMO

Migraine is a common neurological disorder that manifests as recurrent attacks of unilateral and throbbing headache. Conioselinum anthriscoides "Chuanxiong" (Apiaceae; Chuanxiong rhizoma) and Cyperus rotundus L. (Cyperaceae; Cyperi rhizoma) (CRCR), is a classic prescription for treating migraine. This study aimed to reveal the potential mechanisms of CRCR extract against migraine using integrated analysis of metabolomics and network pharmacology. Behavioral changes in the nitroglycerin rat migraine model were determined from von Frey withdrawal response. Untargeted serum metabolomics was used to identify the differentially expressed metabolites and metabolic pathways. The differentially expressed metabolites were analyzed to obtain the corresponding targets by a compound-reaction-enzyme-gene network. Network pharmacology was used to construct a compound-target-pathway network. The common targets of metabolomics and network pharmacology were further analyzed. Metabolomics analysis identified 96 differentially expressed metabolites and 77 corresponding targets. Network pharmacology analysis identified 201 potential targets for CRCR against migraine. By intersecting 77 targets with 201 targets, monoamine oxidase A (MAO-A), monoamine oxidase B (MAO-B), and catechol-O-methyltransferase (COMT) were identified as the common targets, and MAO-A, MAO-B, and COMT were involved in the tyrosine metabolism pathway. Further experiments demonstrated that the contents of MAO-A and COMT were significantly increased in serum and brainstem tissue of the migraine rats. CRCR extract significantly decreased the contents of MAO-A and COMT, while no significant difference was found in MAO-B. Metabolomics analysis indicated that the contents of 3,4-dihydroxyphenylacetate (DOPAC) and 3-(4-hydroxyphenyl)pyruvate (HPP) were significantly increased in the migraine rats, and CRCR extract caused significant decreases in DOPAC and HPP. Interestingly, DOPAC and HPP were two differentially expressed metabolites involved in the tyrosine metabolism pathway. Correlation analysis showed that DOPAC and HPP were highly positively correlated with MAO-A and COMT. Taken together, two key differentially expressed metabolites (DOPAC and HPP), two key targets (MAO-A and COMT), and one relevant metabolic pathway (tyrosine metabolism) showed great importance in the treatment of migraine. This research could provide a new understanding of the potential mechanism of CRCR against migraine. More attentions should be paid into the tyrosine metabolism pathway in future studies.

7.
Pharm Res ; 38(12): 2035-2046, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34862570

RESUMO

PURPOSE: To estimate hepatobiliary clearances of rosuvastatin via simultaneously fitting to reported human positron emission tomography (PET) data in the liver and gallbladder. METHODS: A hepatobiliary model incorporating five intrinsic hepatobiliary clearances (active uptake clearance at the sinusoidal membrane, efflux clearance by passive diffusion through the sinusoidal membrane, influx clearance by passive diffusion through sinusoidal membrane, clearance of biliary excretion at the canalicular membrane, and intercompartment clearance from the intrahepatic bile duct to the gallbladder) and three compartments (liver, intrahepatic bile duct, and gallbladder) was developed to simultaneously fit rosuvastatin liver and gallbladder data from a representative subject reported by Billington et al. (1). Two liver blood supply input functions, arterial input function and dual input function (using peripheral venous as an alternative to portal vein), were assessed. Additionally, the predictive performance between the established model and four reported models trained with only systemic exposure data, was evaluated by comparing simulated liver and gallbladder profiles with observations. RESULTS: The established hepatobiliary model well captured the kinetic profiles of rosuvastatin in the liver and gallbladder during the PET scans. Application of dual input function led to a marked underestimation of liver concentrations at the initial stage after i.v. dosing which cannot be offset by altering model parameter values. The simulated hepatobiliary profiles from three of the reported models demonstrated substantial deviation from the observed data. CONCLUSIONS: The present study highlights the necessity of using hepatobiliary data to verify and improve the predictive performance of hepatic disposition of rosuvastatin.


Assuntos
Vesícula Biliar/metabolismo , Eliminação Hepatobiliar , Fígado/metabolismo , Rosuvastatina Cálcica/farmacocinética , Conjuntos de Dados como Assunto , Vesícula Biliar/diagnóstico por imagem , Humanos , Fígado/diagnóstico por imagem , Modelos Biológicos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
8.
Artigo em Inglês | MEDLINE | ID: mdl-34539795

RESUMO

BACKGROUND: Diabetic nephropathy (DN) has become one of the leading causes of the end-stage renal disease (ESRD). Tang-Shen-Ning (TSN) decoction, an effective Traditional Chinese formula for DN, can improve the renal function and inhibit renal fibrosis in DN. However, its potential mechanism is still unexplored. METHODS: A network pharmacology approach was employed in this study, including screening for differential expressed genes of DN (DN-DEGs), protein-protein interaction (PPI) network analysis, and GO and KEGG enrichment analysis. Besides, a rat model was established to verify the potential effect of TSN in DN. RESULTS: Twenty-three TSN-related DN-DEGs targets were identified. These genes were associated with decreased glomerular filtration rate (GFR) DN. The enrichment analysis suggested that the inhibition of renal fibrosis and inflammation through growth factors and chemokines is the potential mechanism through which TSN improves DN. TSN reduced renal fibrosis and improved pathological damage in the kidney in vivo through the regulation of GJA1, CTGF, MMP7, and CCL5, which are genes associated with ECM deposition. CONCLUSION: This study revealed that TSN improves DN through a multicomponent, multitarget, and multipathway synergy. We provide a scientific basis for potential targets for TSN use to treat DN, yet further experimental validation is needed to investigate these targets and mechanisms.

9.
Drug Des Devel Ther ; 12: 2971-2980, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254426

RESUMO

AIM: Mesangial cell (MC) activation plays an important role in many glomerular diseases associated with renal fibrosis, including diabetic kidney disease (DKD). The aim of this study was to determine whether Astragaloside IV (AS-IV) modulated MC activation in DKD via autophagy by specifically regulating the autophagy inducer sirtuin 1 (SIRT1). METHODS: Cultured MCs and diabetic KK-Ay mice were treated with AS-IV, and the markers and regulatory mediators of autophagy were analyzed using Western blotting, real-time PCR, ELISA and IF. RESULTS: AS-IV inhibited MC activation and enhanced autophagy in hyperglycemic conditions by increasing SIRT1 expression and decreasing NF-κB p65 acetylation. In addition, the SIRT1 activator SRT1720 enhanced autophagy and decreased p65 acetylation during hyperglycemia-induced MC activation. Opposite effects were seen with the SIRT1 inhibitor EX527. Furthermore, the ameliorative effect of AS-IV on MCs was abolished by the autophagy inhibitor 3-MA, while the autophagy activator rapamycin restored hyperglycemia-induced MC activation. Finally, AS-IV improved renal function and fibrosis in the diabetic KK-Ay mice. CONCLUSION: AS-IV ameliorated renal function and morphology by inducing autophagy and inhibiting MC activation through the SIRT1-NF-κB pathway, indicating a potential therapeutic role of AS-IV in glomerular diseases.


Assuntos
Autofagia/efeitos dos fármacos , Glucose/metabolismo , Células Mesangiais/citologia , Células Mesangiais/efeitos dos fármacos , Saponinas/farmacologia , Sirtuína 1/metabolismo , Fator de Transcrição RelA/química , Fator de Transcrição RelA/metabolismo , Triterpenos/farmacologia , Acetilação/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Células Mesangiais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Saponinas/administração & dosagem , Relação Estrutura-Atividade , Triterpenos/administração & dosagem
10.
Drug Des Devel Ther ; 12: 2195-2211, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034224

RESUMO

BACKGROUND: Endoplasmic reticulum stress is associated with podocyte apoptosis in the pathogenesis of diabetic nephropathy (DN). A previous study has demonstrated that emodin has a protective effect in the kidney by suppressing proliferation of mesangial cells and inhibiting the renal tubular epithelial-to-mesenchymal transition. However, the effects of emodin on the podocyte apoptosis in DN and its mechanisms are unknown. AIM: This study aimed to explore the effect of emodin on DN model KK-Ay mice and high glucose induced podocytes apoptosis via the PERK-eIF2α pathway. METHODS: KK-Ay mice model of DN were treated with emodin at dose of 40 and 80 mg/kg/day for 8 weeks. Urine albumin, serum creatinine, blood urea nitrogen levels and the renal histopathology in mice were performed. In vitro, conditionally immortalized mouse podocytes exposed to HG (30mM) were incubated with emodin. Cell viability was measured by CCK-8 assay. Additionally, we performed RNA interference and measured the apoptosis in cultured podocytes treated with emodin. Immunohistochemistry, immunofluorescence, western blot, and real-time PCR were used to detect gene and protein expression both in vivo and in vitro. RESULTS: The results showed that emodin treatment ameliorated urine albumin, serum creatinine, and blood urea nitrogen of DN mice. The pathological damage of kidney tissue was also improved after treatment with emodin. Moreover, emodin increased nephrin expression. Podocytes apoptosis and endoplasmic reticulum stress markers (GRP78) were significantly reduced upon emodin treatment. Furthermore, emodin treatment decreased the expression of phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (P-PERK), phosphorylated P-eIF2α, ATF4, and CHOP. In vitro, emodin treatment was further found to decrease the GRP78 level induced by high glucose or tunicamycin (TM). Besides, emodin and PERK knockdown inhibited the apoptosis of podocytes cultured in high glucose by counteracting the upregulation of phosphorylated PERK, phosphorylated eIF2α, ATF4, and CHOP. CONCLUSION: Overall, the findings indicate that emodin mitigates podocytes apoptosis by inhibiting the PERK-eIF2α signaling pathway in vivo and in vitro, and, therefore, exerts a protective action on podocytes in DN.


Assuntos
Apoptose/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Emodina/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Quinases/farmacologia , eIF-2 Quinase/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Relação Dose-Resposta a Droga , Emodina/administração & dosagem , Emodina/química , Chaperona BiP do Retículo Endoplasmático , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Proteínas Quinases/administração & dosagem , Proteínas Quinases/química , Relação Estrutura-Atividade , eIF-2 Quinase/metabolismo
11.
Sci Rep ; 7(1): 9371, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839221

RESUMO

New data indicate that abnormal glomerular endothelial cell (GEC)-podocyte crosstalk plays a critical role in diabetic nephropathy (DN). The aim of our study is to investigate the role of exosomes from high glucose (HG)-treated GECs in the epithelial-mesenchymal transition (EMT) and dysfunction of podocytes. In this study, exosomes were extracted from GEC culture supernatants and podocytes were incubated with the GEC-derived exosomes. Here, we demonstrate that HG induces the endothelial-mesenchymal transition (EndoMT) of GECs and HG-treated cells undergoing the EndoMT secrete more exosomes than normal glucose (NG)-treated GECs. We show that GEC-derived exosomes can be internalized by podocytes and exosomes from HG-treated cells undergoing an EndoMT-like process can trigger the podocyte EMT and barrier dysfunction. Our study reveals that TGF-ß1 mRNA is enriched in exosomes from HG-treated GECs and probably mediates the EMT and dysfunction of podocytes. In addition, our experimental results illustrate that canonical Wnt/ß-catenin signaling is involved in the exosome-induced podocyte EMT. Our findings suggest the importance of paracrine communication via exosomes between cells undergoing the EndoMT and podocytes for renal fibrosis in DN. Thus, protecting GECs from the EndoMT and inhibiting TGF-ß1-containing exosomes release from GECs is necessary to manage renal fibrosis in DN.


Assuntos
Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Exossomos/metabolismo , Glucose/metabolismo , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Animais , Biomarcadores , Células Cultivadas , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Endocitose , Células Endoteliais/efeitos dos fármacos , Exossomos/ultraestrutura , Expressão Gênica , Glucose/farmacologia , Glomérulos Renais/patologia , Camundongos , Permeabilidade , Fenótipo , Podócitos/efeitos dos fármacos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt
12.
Am J Chin Med ; 45(5): 1075-1092, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659030

RESUMO

Glomerular mesangial cells (GMCs) activation is implicated in the pathogenesis of diabetic nephropathy (DN). Our previous study revealed that high glucose (HG)-treated glomerular endothelial cells (GECs) produce an increased number of TGF-[Formula: see text]1-containing exosomes to activate GMCs through the TGF-[Formula: see text]1/Smad3 signaling pathway. We also identified that Tongxinluo (TXL), a traditional Chinese medicine, has beneficial effects on the treatment of DN in DN patients and type 2 diabetic mice. However, it remained elusive whether TXL could ameliorate renal structure and function through suppression of intercellular transfer of TGF-[Formula: see text]1-containing exosomes from GECs to GMCs. In this study, we demonstrate that TXL can inhibit the secretion of TGF-[Formula: see text]1-containing exosomes from HG-treated GECs. Furthermore, exosomes produced by HG induced-GECs treated with TXL cannot trigger GMC activation, proliferation and extracellular matrix (ECM) overproduction both in vitro and in vivo. These results suggest that TXL can prevent the transfer of TGF-[Formula: see text]1 from GECs to GMCs via exosomes, which may be one of the mechanisms of TXL in the treatment of DN.


Assuntos
Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Células Endoteliais/metabolismo , Exoma/genética , Glomérulos Renais/citologia , Rim/patologia , Células Mesangiais/metabolismo , Fitoterapia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-27672400

RESUMO

Diabetic nephropathy (DN) has been the leading cause of end-stage renal disease (ESRD). Podocyte apoptosis is a main mechanism of progression of DN. It has been demonstrated that activated P38 and caspase-3 induced by oxidative stress mainly account for increased podocyte apoptosis and proteinuria in DN. Meanwhile, Tongxinluo (TXL) can ameliorate renal structure disruption and dysfunction in DN patients in our clinical practice. However, the effect of TXL on podocyte apoptosis and P38 pathway remains unclear. To explore the effect of TXL on podocyte apoptosis and its molecular mechanism in DN, our in vivo and in vitro studies were performed. TXL attenuated oxidative stress in podocyte in DN in our in vivo and in vitro studies. Moreover, TXL inhibited the activation of P38 and caspase-3. Bcl-2 and Bax expression was partially restored by TXL treatment in our in vivo and in vitro studies. More importantly, TXL decreased podocyte apoptosis in diabetic rats and high glucose cultured podocyte. In conclusion, TXL protects podocyte from apoptosis in DN, partially through its antioxidant effect and inhibiting of the activation of P38 and caspase-3.

14.
Mol Cell Endocrinol ; 392(1-2): 163-72, 2014 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-24887517

RESUMO

Epithelial-to-mesenchymal transition (EMT) plays an important role in renal interstitial fibrosis (RIF) with diabetic nephropathy (DN). Smad7 (a inhibitory smad), a downstream signaling molecules of TGF-ß1, represses the EMT. The physiological function of miR-21 is closely linked to EMT and RIF. However, it remained unclear whether miR-21 over-expression affected TGF-ß1-induced EMT by regulating smad7 in DN. In this study, real-time RT-PCR, cell transfection, luciferase reporter gene assays, western blot and confocal microscope were used, respectively. Here, we found that miR-21 expression was upregulated by TGF-ß1 in time- and concentration -dependent manner. Moreover, miR-21 over-expression enhanced TGF-ß1-induced EMT(upregulation of a-SMA and downregulation of E-cadherin) by directly down-regulating smad7/p-smad7 and indirectly up-regulating smad3/p-smad3, accompanied by the decrease of Ccr and the increase of col-IV, FN, the content of collagen fibers, RTBM, RTIAW and ACR. Meantime, the siRNA experiment showed that smad7 can directly regulate a-SMA and E-cadherin expression. More importantly, miR-21 inhibitor can not only inhibit EMT and fibrosis but also ameliorate renal structure and function. In conclusion, our results demonstrated that miR-21 overexpression can contribute to TGF-ß1-induced EMT by inhibiting target smad7, and that targeting miR-21 may be a better alternative to directly suppress TGF-ß1-mediated fibrosis in DN.


Assuntos
Nefropatias Diabéticas/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Rim/patologia , MicroRNAs/metabolismo , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Actinas/metabolismo , Animais , Sequência de Bases , Biomarcadores/metabolismo , Caderinas/metabolismo , Linhagem Celular , Nefropatias Diabéticas/genética , Regulação para Baixo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Humanos , Rim/efeitos dos fármacos , Rim/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad7/genética , Regulação para Cima/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-24864150

RESUMO

Diabetic nephropathy (DN) is a major cause of chronic kidney failure and characterized by interstitial and glomeruli fibrosis. Epithelial-to-mesenchymal transition (EMT) plays an important role in the pathogenesis of DN. Tong xinluo (TXL), a Chinese herbal compound, has been used in China with established therapeutic efficacy in patients with DN. To investigate the molecular mechanism of TXL improving DN, KK-Ay mice were selected as models for the evaluation of pathogenesis and treatment in DN. In vitro, TGF- ß 1 was used to induce EMT. Western blot (WB), immunofluorescence staining, and real-time polymerase chain reaction (RT-PCR) were applied to detect the changes of EMT markers in vivo and in vitro, respectively. Results showed the expressions of TGF- ß 1 and its downstream proteins smad3/p-smad3 were greatly reduced in TXL group; meantime, TXL restored the expression of smad7. As a result, the expressions of collagen IV (Col IV) and fibronectin (FN) were significantly decreased in TXL group. In vivo, 24 h-UAER (24-hour urine albumin excretion ratio) and BUN (blood urea nitrogen) were decreased and Ccr (creatinine clearance ratio) was increased in TXL group compared with DN group. In summary, the present study demonstrates that TXL successfully inhibits TGF- ß 1-induced epithelial-to-mesenchymal transition in DN, which may account for the therapeutic efficacy in TXL-mediated renoprotection.

16.
Am J Physiol Renal Physiol ; 306(5): F486-95, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24370587

RESUMO

Diabetic nephropathy (DN) is one of the most important diabetic microangiopathies. The epithelial-to-mesenchymal transition (EMT) plays an important role in DN. The physiological role of microRNA-21 (miR-21) was closely linked to EMT. However, it remained elusive whether tongxinluo (TXL) ameliorated renal structure and function by regulating miR-21-induced EMT in DN. This study aimed to determine the effect of TXL on miR-21-induced renal tubular EMT and to explore the relationship between miR-21 and TGF-ß1/smads signals. Real-time RT-PCR, cell transfection, in situ hybridization (ISH), and laser confocal microscopy were used, respectively. Here, we revealed that TXL dose dependently lowered miR-21 expression in tissue, serum, and cells. Overexpression of miR-21 can enhance α-smooth muscle actin (SMA) expression and decrease E-cadherin expression by upregulating smad3/p-smad3 expression and downregulating smad7 expression. Interestingly, TXL also increased E-cadherin expression and decreased α-SMA expression by regulating miR-21 expression. More importantly, TXL decreased collagen IV, fibronectin, glomerular basement membrane, glomerular area, and the albumin/creatinine ratio, whereas it increased the creatinine clearance ratio. The results demonstrated that TXL ameliorated renal structure and function by regulating miR-21-induced EMT, which was one of the mechanisms to protect against DN, and that miR-21 may be one of the therapeutic targets for TXL in DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MicroRNAs/metabolismo , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Humanos
17.
Artigo em Inglês | MEDLINE | ID: mdl-24288572

RESUMO

Diabetic peripheral neuropathy (DPN) is a common microvascular complication of diabetes associated with high disability rate and low quality of life. Tang-Luo-Ning (TLN) is an effective traditional Chinese medicine for the treatment of DPN. To illustrate the underlying neural protection mechanisms of TLN, the effect of TLN on electrophysiology and sciatic nerve morphology was investigated in a model of streptozotocin-induced DPN, as well as the underlying mechanism. Sciatic motor nerve conduction velocity and digital sensory nerve conduction velocity were reduced in DPN and were significantly improved by TLN or α -lipoic acid at 10 and 20 weeks after streptozotocin injection. It was demonstrated that TLN intervention for 20 weeks significantly alleviated pathological injury as well as increased the phosphorylation of ErbB2, Erk, Bad (Ser112), and the mRNA expression of neuregulin 1 (Nrg1), GRB2-associated binding protein 1 (Gab1), and mammalian target of rapamycin (Mtor) in injured sciatic nerve. These novel therapeutic properties of TLN to promote Schwann cell survival may offer a promising alternative medicine for the patients to delay the progression of DPN. The underlying mechanism may be that TLN exerts neural protection effect after sciatic nerve injury through Nrg1/ErbB2→Erk/Bad Schwann cell survival signaling pathway.

18.
Zhongguo Dang Dai Er Ke Za Zhi ; 15(3): 219-22, 2013 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-23498766

RESUMO

OBJECTIVE: To investigate the clinical features of capillary leak syndrome (CLS) in children with sepsis, and to analyze its risk factors. METHODS: Clinical data of 384 children with sepsis was studied retrospectively. They included 304 cases of general sepsis, 54 cases of severe sepsis and 26 cases of septic shock, and were divided into non-CLS (n=356) and CLS groups (n=28). Univariate analysis was performed for each of the following variables: sex, age, malnutrition, anemia, coagulation disorders, white blood cell count, C-reactive protein (CRP), procalcitonin (PCT), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, blood glucose, lactic acid, Pediatric Risk of Mortality (PRISM) III score, pediatric critical illness score (PICS), severe sepsis and number of failed organs≥3. The statistically significant variables (as independent variables) were subjected to multivariate logistic regression analysis. RESULTS: The incidence rate of CLS in children with septic shock, severe sepsis and general sepsis were 42.3%, 20.1% and 1.3%, respectively, with significant differences among them (P<0.01). There were significant differences in anemia, coagulation disorders, CRP, PCT>2 ng/mL, TNF, IL-1, IL-6, blood glucose, lactic acid, PRISM III score, PICS and number of failed organs≥3 between the non-CLS and CLS groups (P<0.05). Severe sepsis/shock and PRISM III score were the independent risk factors for CLS in children with sepsis. CONCLUSIONS: The severity of sepsis and PRISM III score are positively correlated with the incidence of CLS in children with sepsis. Early monitoring of such factors as infection markers and blood glucose in children with severe sepsis and high PRISM III score may contribute to early diagnosis and effective intervention, thus reducing the mortality from CLS in children with sepsis.


Assuntos
Síndrome de Vazamento Capilar/etiologia , Sepse/complicações , Adolescente , Síndrome de Vazamento Capilar/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Modelos Logísticos , Masculino , Estudos Retrospectivos , Fatores de Risco
19.
Cell Biochem Biophys ; 67(2): 537-46, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23443810

RESUMO

MicroRNAs (miRs) play important roles in initiation and progression of many pathologic processes. However, the roles of miRs in diabetic nephropathy remain unclear. This study was to determine whether miR-21 was involved in diabetic nephropathy and to explore the relationship between miR-21 and MMP9/TIMP1 expression in diabetic nephropathy. In situ hybridization studies showed that miR-21 was primarily localized and distributed in cortical glomerular and renal tubular cells in diabetic kk-ay kidney. Real-time quantitative RT-PCR demonstrated that the expression of miR-21 was significantly increased in kk-ay mice, compared with control C57BL mice. Interestingly, miR-21 expression positively correlated with urine albumin creatine ratio (ACR), TIMP1, collagen IV (ColIV), and fibronectin (FN); while negatively correlated with creatine clearance ratio (Ccr) and MMP-9 protein. Importantly, antagomir-21 not only ameliorated Ccr and ACR but also decreased TIMP1, ColIV, and FN proteins. In conclusion, our data demonstrate that miR-21 contributes to renal fibrosis by mediating MMP9/TIMP1 and that inhibition of miR-21 may be a novel target for diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Rim/patologia , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Albuminúria/complicações , Animais , Colágeno Tipo IV/metabolismo , Creatina/urina , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/urina , Fibronectinas/metabolismo , Fibrose/genética , Fibrose/metabolismo , Regulação Enzimológica da Expressão Gênica , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Inibidor Tecidual de Metaloproteinase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...