Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Small ; : e2403159, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958081

RESUMO

Uncovering the hardening mechanisms is of great importance to accelerate the design of superhard high-entropy carbides (HECs). Herein, the hardening mechanisms of HECs by a combination of experiments and first-principles calculations are systematically explored. The equiatomic single-phase 4- to 8-cation HECs (4-8HECs) are successfully fabricated by the two-step approach involving ultrafast high-temperature synthesis and hot-press sintering techniques. The as-fabricated 4-8HEC samples possess fully dense microstructures (relative densities of up to ≈99%), similar grain sizes, clean grain boundaries, and uniform compositions. With the elimination of these morphological properties, the monotonic enhancement of Vickers hardness and nanohardness of the as-fabricated 4-8HEC samples is found to be driven by the aggravation of lattice distortion. Further studies show no evident association between the enhanced hardness of the as-fabricated 4-8HEC samples and other potential indicators, including bond strength, valence electron concentration, electronegativity mismatch, and metallic states. The work unveils the underlying hardening mechanisms of HECs and offers an effective strategy for designing superhard HECs.

2.
Science ; 384(6693): 317-320, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38635716

RESUMO

The transport properties of gapless edge modes at boundaries between topologically distinct domains are of fundamental and technological importance. We experimentally studied long-distance quantized Hall drifts in a harmonically confined topological pump of ultracold fermionic atoms. We found that quantized drifts halt and reverse their direction when the atoms reach a critical slope of the confining potential, revealing the presence of a topological boundary. The drift reversal corresponded to a band transfer between a band with Chern number C = +1 and another with C = -1 through a gapless edge mode, in agreement with the bulk-edge correspondence for noninteracting particles. Nonzero repulsive Hubbard interactions led to the emergence of an additional edge in the system through a mechanism in which pairs of fermions are split.

3.
Nat Phys ; 19(10): 1471-1475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841998

RESUMO

Geometric properties of wave functions can explain the appearance of topological invariants in many condensed-matter and quantum systems1. For example, topological invariants describe the plateaux observed in the quantized Hall effect and the pumped charge in its dynamic analogue-the Thouless pump2-4. However, the presence of interparticle interactions can affect the topology of a material, invalidating the idealized formulation in terms of Bloch waves. Despite pioneering experiments in different platforms5-9, the study of topological matter under variations in interparticle interactions has proven challenging10. Here we experimentally realize a topological Thouless pump with fully tuneable Hubbard interactions in an optical lattice and observe regimes with robust pumping, as well as an interaction-induced breakdown. We confirm the pump's robustness against interactions that are smaller than the protecting gap for both repulsive and attractive interactions. Furthermore, we identify that bound pairs of fermions are responsible for quantized transport at strongly attractive interactions. However, for strong repulsive interactions, topological pumping breaks down, but we show how to reinstate it by modifying the pump trajectory. Our results will prove useful for further investigations of interacting topological matter10, including edge effects11 and interaction-induced topological phases12-15.

4.
STAR Protoc ; 4(2): 102288, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149857

RESUMO

Here, we present a protocol for electrotaxis of large epithelial cell sheets without compromising the integrity of cell epithelia in a high-throughput customized directed current electrotaxis chamber. We describe the fabrication and use of polydimethylsiloxane stencils to control the size and shape of human keratinocyte cell sheets. We detail cell tracking, cell sheet contour assay, and particle image velocimetry to reveal the spatial and temporal motility dynamics of cell sheets. This approach is applicable to other collective cell migration studies. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.

5.
iScience ; 25(10): 105136, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185354

RESUMO

Directional migration initiated at the wound edge leads epithelia to migrate in wound healing. How such coherent migration is achieved is not well understood. Here, we used electric fields to induce robust migration of sheets of human keratinocytes and developed an in silico model to characterize initiation and propagation of epithelial collective migration. Electric fields initiate an increase in migration directionality and speed at the leading edge. The increases propagate across the epithelial sheets, resulting in directional migration of cell sheets as coherent units. Both the experimental and in silico models demonstrated vector-like integration of the electric and default directional cues at free edge in space and time. The resultant collective migration is consistent in experiments and modeling, both qualitatively and quantitatively. The keratinocyte model thus faithfully reflects key features of epithelial migration as a coherent tissue in vivo, e.g. that leading cells lead, and that epithelium maintains cell-cell junction.

6.
Phys Rev Lett ; 129(5): 053201, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960575

RESUMO

Constructing new topological materials is of vital interest for the development of robust quantum applications. However, engineering such materials often causes technological overhead, such as large magnetic fields, spin-orbit coupling, or dynamical superlattice potentials. Simplifying the experimental requirements has been addressed on a conceptual level-by proposing to combine simple lattice structures with Floquet engineering-but there has been no experimental implementation. Here, we demonstrate topological pumping in a Floquet-Bloch band using a plain sinusoidal lattice potential and two-tone driving with frequencies ω and 2ω. We adiabatically prepare a near-insulating Floquet band of ultracold fermions via a frequency chirp, which avoids gap closings en route from trivial to topological bands. Subsequently, we induce topological pumping by slowly cycling the amplitude and the phase of the 2ω drive. Our system is well described by an effective Shockley model, establishing a novel paradigm to engineer topological matter from simple underlying lattice geometries. This approach could enable the application of quantized pumping in metrology, following recent experimental advances on two-frequency driving in real materials.

7.
Environ Entomol ; 50(4): 842-851, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-33851702

RESUMO

Insecticide overuse in crop production systems often results in detrimental effects on predators and parasitoids, which regulate important insect pests. The natural enemies are also unable to survive in monocrop landscapes with the absence of shelter or food sources. Diversified vegetation, especially with flowering plants, can enhance natural enemy abundance and diversity, thus strengthening biological control, enabling farmers to reduce insecticides. In this study, we conserved bund vegetation and manipulated the existing rice landscapes with flowering plants to provide food and shelter for the biological control agents. Our study revealed significant positive relationships between predator densities and bund plant diversity. The abundance of predators significantly increased in the eco-engineered plots, especially at the flowering peaks compared to the insecticide-treated and control plots, while parasitoids were more diverse in both the eco-engineered and control plots. There were no significant differences in planthopper and leafhopper densities among the treatments during the rice early and maximum tillering stages, suggesting effective natural control of these herbivore pests in the eco-engineered plots at the early rice-growing season. However, at the heading stage relatively higher planthopper and leafhopper populations in the control and eco-engineered plots than in the insecticide-sprayed plots were recorded, suggesting perhaps the need for insecticide interventions if exceeding the threshold at this time. Our study indicates that manipulating the habitats surrounding the rice fields to enhance natural enemies is a sustainable practice in rice production as it can enhance the natural suppression of pests and thus reducing the need for insecticide.


Assuntos
Magnoliopsida , Oryza , Animais , Insetos , Controle Biológico de Vetores , Estações do Ano
8.
Phys Rev Lett ; 126(9): 090602, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750183

RESUMO

In an effort to address integrability breaking in cold gas experiments, we extend the integrable hydrodynamics of the Lieb-Liniger model with two additional components representing the population of atoms in the first and second transverse excited states, thus enabling a description of quasi-1D condensates. Collisions between different components are accounted for through the inclusion of a Boltzmann-type collision integral in the hydrodynamic equation. Contrary to standard generalized hydrodynamics, our extended model captures thermalization of the condensate at a rate consistent with experimental observations from a quantum Newton's cradle setup.

9.
Bioelectricity ; 2(4): 372-381, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34476366

RESUMO

Direct current (DC) electrical stimulation has been shown to have remarkable effects on regulating cell behaviors. Translation of this technology to clinical uses, however, has to overcome several obstacles, including Joule heat production, changes in pH and ion concentration, and electrode products that are detrimental to cells. Application of DC voltages in thick tissues where their thickness is >0.8 mm caused significant changes in temperature, pH, and ion concentrations. In this study, we developed a multifield and -chamber electrotaxis chip, and various stimulation schemes to determine effective and safe stimulation strategies to guide the migration of human vascular endothelial cells. The electrotaxis chip with a chamber thickness of 1 mm allows 10 voltages applied in one experiment. DC electric fields caused detrimental effects on cells in a 1 mm chamber that mimicking 3D tissue with a decrease in cell migration speed and an increase in necrosis and apoptosis. Using the chip, we were able to select optimal stimulation schemes that were effective in guiding cells with minimal detrimental effects. This experimental system can be used to determine optimal electrical stimulation schemes for cell migration, survival with minimal detrimental effects on cells, which will facilitate to bring electrical stimulation for in vivo use.

10.
IEEE Trans Biomed Eng ; 66(11): 3072-3079, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30794500

RESUMO

OBJECTIVE: Human feet have long been considered in close association with whole-body health, from which abundant cardiovascular and skeletomuscular information can be extracted. In this study, we aim to develop the world's first foot-based wearable system that can detect both pedal pulses and muscular activities, referred to as FeetBeat. METHODS: Utilizing the flexible iontronic sensing technology, we have constructed and characterized a five-unit sensing array for detection of both pedal pulse signals and muscular activities. It is integrated into the tongue of an athletic shoe for real-time signal acquisition. Additionally, the linear array allows alignment-free capture of pulse signals and also provides a spatial reference to muscular activities. RESULTS: An ultrahigh sensitivity of up to 1 nF/mmHg has been achieved for individual units, with a range of 1 to 200 mmHg. The pedal pulse waveforms have been detected to derive vital health signs, such as heart rates (HR) and respiratory rates, of which the pulse-derived HR is compared with the electrocardiogram. Moreover, individual tendon responses have been acquired to analyze different pedal gestures, from which multi-channel signals can be used to distinguish different activities. CONCLUSION: The FeetBeat device has shown the potential to be the world's first wearable platform to simultaneously analyze both vital signals and body activities from the measurable pedal pulse waveforms and muscular responses in a natural and unobtrusive fashion. The data-collecting wearable system provides a highly valuable means to assess the personalized health as well as daily activities on a continuous basis.


Assuntos
Pé/fisiologia , Monitorização Ambulatorial/instrumentação , Movimento/fisiologia , Processamento de Sinais Assistido por Computador/instrumentação , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Frequência Cardíaca , Atividades Humanas , Humanos , Monitorização Ambulatorial/métodos , Pressão , Sapatos
11.
Sci Rep ; 8(1): 1439, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362385

RESUMO

The relationship between O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and clinicopathological characteristics of non-small-cell lung carcinoma (NSCLC) has remained controversial and unclear. Therefore, in this study we have undertaken a systematic review and meta-analysis of relevant studies to quantitatively investigate this association. We identified 30 eligible studies investigating 2714 NSCLC patients. The relationship between MGMT hypermethylation and NSCLC was identified based on 20 studies, including 1539 NSCLC patient tissue and 1052 normal and adjacent tissue samples (OR = 4.60, 95% CI = 3.46~6.11, p < 0.00001). MGMT methylation varied with ethnicity (caucasian: OR = 4.56, 95% CI = 2.63~7.92, p < 0.00001; asian: OR = 5.18, 95% CI = 2.03~13.22, p = 0.0006) and control style (autologous: OR = 4.44, 95% CI = 3.32~5.92, p < 0.00001; heterogeneous: OR = 9.05, 95% CI = 1.79~45.71, p = 0.008). In addition, MGMT methylation was observed to be specifically associated with NSCLC clinical stage, and not with age, sex, smoking, pathological types, and differentiation status. Also MGMT methylation did not impact NSCLC patients survival (HR = 1.32, 95% CI = 0.77~2.28, p = 0.31). Our study provided clear evidence about the association of MGMT hypermethylation with increased risk of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Neoplasias Pulmonares/patologia , Proteínas Supressoras de Tumor/genética , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Feminino , Estudos de Associação Genética , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Masculino , Estadiamento de Neoplasias , Regiões Promotoras Genéticas
12.
Adv Mater ; 30(6)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29271516

RESUMO

Recent development of epidermal electronics provides an enabling means to continuous monitoring of physiological signals and close tracking of physical activities without affecting quality of life. Such devices require high sensitivity for low-magnitude signal detection, noise reduction for motion artifacts, imperceptible wearability with long-term comfortableness, and low-cost production for scalable manufacturing. However, the existing epidermal pressure sensing devices, usually involving complex multilayer structures, have not fully addressed the aforementioned challenges. Here, the first epidermal-iontronic interface (EII) is successfully introduced incorporating both single-sided iontronic devices and the skin itself as the pressure sensing architectures, allowing an ultrathin, flexible, and imperceptible packaging with conformal epidermal contact. Notably, utilizing skin as part of the EII sensor, high pressure sensitivity and high signal-to-noise ratios are achieved, along with ultralow motion artifacts for both internal (body) and external (environmental) mechanical stimuli. Monitoring of various vital signals, such as blood pressure waveforms, respiration waveforms, muscle activities and artificial tactile sensation, is successfully demonstrated, implicating a broad applicability of the EII devices for emerging wearable applications.


Assuntos
Dispositivos Eletrônicos Vestíveis , Epiderme , Pressão , Qualidade de Vida , Pele
13.
Adv Mater ; 29(36)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28758264

RESUMO

The study of wearable devices has become a popular research topic recently, where high-sensitivity, noise proof sensing mechanisms with long-term wearability play critical roles in a real-world implementation, while the existing mechanical sensing technologies (i.e., resistive, capacitive, or piezoelectric) have yet offered a satisfactory solution to address them all. Here, we successfully introduced a flexible supercapacitive sensing modality to all-fabric materials for wearable pressure and force sensing using an elastic ionic-electronic interface. Notably, an electrospun ionic fabric utilizing nanofibrous structures offers an extraordinarily high pressure-to-capacitance sensitivity (114 nF kPa-1 ), which is at least 1000 times higher than any existing capacitive sensors and one order of magnitude higher than the previously reported ionic devices, with a pressure resolution of 2.4 Pa, achieving high levels of noise immunity and signal stability for wearable applications. In addition, its fabrication process is fully compatible with existing industrial manufacturing and can lead to cost-effective production for its utility in emerging wearable uses in a foreseeable future.

14.
Cell Mol Life Sci ; 74(20): 3841-3850, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28612218

RESUMO

When a constraint is removed, confluent cells migrate directionally into the available space. How the migration directionality and speed increase are initiated at the leading edge and propagate into neighboring cells are not well understood. Using a quantitative visualization technique-Particle Image Velocimetry (PIV)-we revealed that migration directionality and speed had strikingly different dynamics. Migration directionality increases as a wave propagating from the leading edge into the cell sheet, while the increase in cell migration speed is maintained only at the leading edge. The overall directionality steadily increases with time as cells migrate into the cell-free space, but migration speed remains largely the same. A particle-based compass (PBC) model suggests cellular interplay (which depends on cell-cell distance) and migration speed are sufficient to capture the dynamics of migration directionality revealed experimentally. Extracellular Ca2+ regulated both migration speed and directionality, but in a significantly different way, suggested by the correlation between directionality and speed only in some dynamic ranges. Our experimental and modeling results reveal distinct directionality and speed dynamics in collective migration, and these factors can be regulated by extracellular Ca2+ through cellular interplay. Quantitative visualization using PIV and our PBC model thus provide a powerful approach to dissect the mechanisms of collective cell migration.


Assuntos
Cálcio/metabolismo , Comunicação Celular , Movimento Celular , Epitélio Corneano/citologia , Materiais Biocompatíveis/química , Contagem de Células , Linhagem Celular , Dimetilpolisiloxanos/química , Epitélio Corneano/metabolismo , Humanos , Modelos Biológicos , Cicatrização
15.
Folia Histochem Cytobiol ; 55(2): 43-51, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28518211

RESUMO

INTRODUCTION: Cervical cancer is a leading cause of mortality in women worldwide. The resistance to irradiation at the advanced stage is the main reason for the poor prognosis and high mortality. This work aims to elucidate the molecular mechanism underlying the radio-resistance. MATERIAL AND METHODS: In this study, we determined the pEGFR-T654 and pDNA-PK-T2609 expression level changes in irradiated HeLa cells treated with T654 peptide, a nuclear localization signal (NLS) inhibitor, to inhibit EGFR nuclear transport. Cell viability, cell cycle and migratory capacity were analyzed. Xenograft animal model was used to evaluate the effect of EGFR nuclear transport inhibition on the tumor growth in vivo. RESULTS: The enhanced translocation of nuclear EGFR in the irradiated HeLa cells correlated with the increasing level of pEGFR-T654 and pDNA-PK-T2609. Inhibition of EGFR nuclear translocation by NLS peptide inhibitor attenuated DNA damage repair in the irradiated HeLa cells, decreased cell viability and promoted cell death through arrest at G0 phase. NLS peptide inhibitor impaired the migratory capacity of irradiated HeLa cells, and negatively affected tumorigenesis in xenograft mice. CONCLUSIONS: This work puts forward a potential molecular mechanism of the irradiation resistance in cervical cancer cells, providing a promising direction towards an efficient therapy of cervical cancer.


Assuntos
Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Tolerância a Radiação/fisiologia , Animais , Transporte Biológico/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptídeos/farmacologia , Fosforilação , Treonina/química , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Microsyst Nanoeng ; 3: 17004, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31057859

RESUMO

Degradation and delamination resulting from environmental humidity have been technically challenging for poly (3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) thin-film processing. To overcome this problem, we introduced a one-step photolithographic method to both pattern and link a PEDOT:PSS film onto a poly (ethylene glycol) (PEG) layer as a hybrid thin film structure on a flexible substrate. This film exhibited excellent long-term moisture stability (more than 10 days) and lithographic resolution (as low as 2 µm). Mechanical characterizations were performed, including both stretching and bending tests, which illustrated the strong adhesion present between the PEDOT:PSS and PEG layers as well as between the hybrid thin film and substrate. Moreover, the hybrid moisture-absorbable film showed a quick response of its permittivity to environmental humidity variations, in which the patterned PEDOT:PSS layer served as an electrode and the PEG layer as a moisture-sensing element. Perspiration tracking over various parts of the body surface as well as breath rate measurement under the nose were successfully carried out as demonstrations, which illustrated the potential utility of this stable hybrid thin film for emerging flexible and wearable electronic applications.

17.
Anal Chem ; 87(20): 10166-71, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26334956

RESUMO

Since the 1960s, combination chemotherapy has been widely utilized as a standard method to treat cancer. However, because of the potentially enormous number of drug candidates and combinations, conventional identification methods of the effective drug combinations are usually associated with significantly high operational costs, low throughput screening, laborious and time-consuming procedures, and ethical concerns. In this paper, we present a low-cost, high-efficiency microfluidic print-to-screen (P2S) platform, which integrates combinatorial screening with biomolecular printing for high-throughput screening of anticancer drug combinations. This P2S platform provides several distinct advantages and features, including automatic combinatorial printing, high-throughput parallel drug screening, modular disposable cartridge, and biocompatibility, which can potentially speed up the entire discovery cycle of potent drug combinations. Microfluidic impact printing utilizing plug-and-play microfluidic cartridges is experimentally characterized with controllable droplet volume and accurate positioning. Furthermore, the combinatorial print-to-screen assay is demonstrated in a proof-of-concept biological experiment which can identify the positive hits among the entire drug combination library in a parallel and rapid manner. Overall, this microfluidic print-to-screen platform offers a simple, low-cost, high-efficiency solution for high-throughput large-scale combinatorial screening and can be applicable for various emerging applications in drug cocktail discovery.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/análise , Técnicas de Química Combinatória , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Técnicas Analíticas Microfluídicas , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Impressão/instrumentação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Lab Chip ; 14(22): 4398-405, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25242672

RESUMO

Both endogenous and externally applied electrical stimulation can affect a wide range of cellular functions, including growth, migration, differentiation and division. Among those effects, the electrical field (EF)-directed cell migration, also known as electrotaxis, has received broad attention because it holds great potential in facilitating clinical wound healing. Electrotaxis experiment is conventionally conducted in centimetre-sized flow chambers built in Petri dishes. Despite the recent efforts to adapt microfluidics for electrotaxis studies, the current electrotaxis experimental setup is still cumbersome due to the needs of an external power supply and EF controlling/monitoring systems. There is also a lack of parallel experimental systems for high-throughput electrotaxis studies. In this paper, we present a first independently operable microfluidic platform for high-throughput electrotaxis studies, integrating all functional components for cell migration under EF stimulation (except microscopy) on a compact footprint (the same as a credit card), referred to as ElectroTaxis-on-a-Chip (ETC). Inspired by the R-2R resistor ladder topology in digital signal processing, we develop a systematic approach to design an infinitely expandable microfluidic generator of EF gradients for high-throughput and quantitative studies of EF-directed cell migration. Furthermore, a vacuum-assisted assembly method is utilized to allow direct and reversible attachment of our device to existing cell culture media on biological surfaces, which separates the cell culture and device preparation/fabrication steps. We have demonstrated that our ETC platform is capable of screening human cornea epithelial cell migration under the stimulation of an EF gradient spanning over three orders of magnitude. The screening results lead to the identification of the EF-sensitive range of that cell type, which can provide valuable guidance to the clinical application of EF-facilitated wound healing.


Assuntos
Movimento Celular , Ensaios de Triagem em Larga Escala/instrumentação , Dispositivos Lab-On-A-Chip , Linhagem Celular , Córnea/citologia , Eletricidade , Células Epiteliais/citologia , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/economia , Humanos , Dispositivos Lab-On-A-Chip/economia , Técnicas Analíticas Microfluídicas/economia , Técnicas Analíticas Microfluídicas/instrumentação
19.
Small ; 8(11): 1710-6, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22434767

RESUMO

Particle size is one important parameter of nanocrystals that need to be tightly controlled, owing to its versatility for tailoring the properties and functions of nanocrystals towards various applications. In this article, oxidative etching by hydrogen chloride is employed as a tool to control the size of metallic nanocrystals. As a result of the size control, investigations into the size-dependent plasmonic and catalytic properties of metallic nanocrystals can be investigated. Given that the shape can be kept consistent when tuning the particle size in this system, it enables the systematic investigation of size-dependent properties free of the influence of other factors such as shape effect.


Assuntos
Nanopartículas Metálicas/química , Nanotecnologia/métodos , Catálise , Ácido Clorídrico/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oxirredução , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA