Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313018

RESUMO

Objectives: Multiple lung cancers may present as multiple primary lung cancers (MPLC) or intrapulmonary metastasis (IPM) with variations in clinical stage, treatment, and prognosis. However, the existing differentiation criteria based on histology do not fully meet the clinical needs. Next-generation sequencing (NGS) may play an important role in assisting the identification of different pathologies. Here, we extended the relevant data by combining histology and NGS to develop detailed identification criteria for MPLC and IPM. Materials and Methods: Patients with lung cancer (each patient had ≥2 tumors) were enrolled in the training (n = 22) and validation (n = 13) cohorts. Genomic profiles obtained from 450-gene-targeted NGS were analyzed, and the new criteria were developed based on our findings and pre-existing Martini & Melamed criteria and molecular benchmarks. Results: The analysis of the training cohort indicated that patients identified with MPLC had no (or <2) trunk or shared mutations. However, 98.02% of mutations were branch mutations, and 69.23% of MPLC had no common mutations. In contrast, a higher percentage of trunk (33.08%) or shared (9.02%) mutations were identified in IPM, suggesting significant differences among mutated components. Subsequently, eight MPLC and five IPM cases were identified in the validation cohort, aligning with the independent imaging and pathologic distinction. Overall, the percentage of trunk and shared mutations was higher in patients with IPM than in patients with MPLC. Based on these results and the establishment of new determination criteria for MPLC and IPM, we emphasize that the type and number of shared variants based on histologic consistency assist in identification. Conclusion: Determining genetic alterations may be an effective method for differentiating MPLC and IPM, and NGS can be used as a valuable assisting tool.


Assuntos
Neoplasias Pulmonares , Neoplasias Primárias Múltiplas , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Primárias Múltiplas/genética , Pulmão/patologia , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Nanotechnology ; 35(19)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38316053

RESUMO

Three-dimensional Dirac semimetals with square-net non-symmorphic symmetry, such as ternary ZrXY (X = Si, Ge; Y = S, Se, Te) compounds, have attracted significant attention owing to the presence of topological nodal lines, loops, or networks in their bulk. Orbital symmetry plays a profound role in such materials as the different branches of the nodal dispersion can be distinguished by their distinct orbital symmetry eigenvalues. The presence of different eigenvalues suggests that scattering between states of different orbital symmetry may be strongly suppressed. Indeed, in ZrSiS, there has been no clear experimental evidence of quasiparticle scattering reported between states of different symmetry eigenvalues at small wave vectorq⃗.Here we show, using quasiparticle interference, that atomic step-edges in the ZrSiS surface facilitate quasiparticle scattering between states of different symmetry eigenvalues. This symmetry eigenvalue mixing quasiparticle scattering is the first to be reported for ZrSiS and contrasts quasiparticle scattering with no mixing of symmetry eigenvalues, where the latter occurs with scatterers preserving the glide mirror symmetry of the crystal lattice, e.g. native point defects in ZrSiS. Finally, we show that the electronic structure of the ZrSiS surface, including its unique floating band surface state, can be tuned by a vertical electric field locally applied by the tip of a scanning tunneling microscope (STM), enabling control of a spin-orbit induced avoided crossing near the Fermi level by as much as 300%.

3.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067802

RESUMO

4D millimeter wave (mmWave) imaging radar is a new type of vehicle sensor technology that is critical to autonomous driving systems due to its lower cost and robustness in complex weather. However, the sparseness and noise of point clouds are still the main problems restricting the practical application of 4D imaging radar. In this paper, we introduce SMIFormer, a multi-view feature fusion network framework based on 4D radar single-modal input. SMIFormer decouples the 3D point cloud scene into 3 independent but interrelated perspectives, including bird's-eye view (BEV), front view (FV), and side view (SV), thereby better modeling the entire 3D scene and overcoming the shortcomings of insufficient feature representation capabilities under single-view built from extremely sparse point clouds. For multi-view features, we proposed multi-view feature interaction (MVI) to exploit the inner relationship between different views by integrating features from intra-view interaction and cross-view interaction. We evaluated the proposed SMIFormer on the View-of-Delft (VoD) dataset. The mAP of our method reached 48.77 and 71.13 in the fully annotated area and the driving corridor area, respectively. This shows that 4D radar has great development potential in the field of 3D object detection.

4.
Nat Commun ; 14(1): 5182, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626027

RESUMO

The interplay between magnetism and electronic band topology enriches topological phases and has promising applications. However, the role of topology in magnetic fluctuations has been elusive. Here, we report evidence for topology stabilized magnetism above the magnetic transition temperature in magnetic Weyl semimetal candidate CeAlGe. Electrical transport, thermal transport, resonant elastic X-ray scattering, and dilatometry consistently indicate the presence of locally correlated magnetism within a narrow temperature window well above the thermodynamic magnetic transition temperature. The wavevector of this short-range order is consistent with the nesting condition of topological Weyl nodes, suggesting that it arises from the interaction between magnetic fluctuations and the emergent Weyl fermions. Effective field theory shows that this topology stabilized order is wavevector dependent and can be stabilized when the interband Weyl fermion scattering is dominant. Our work highlights the role of electronic band topology in stabilizing magnetic order even in the classically disordered regime.

5.
Materials (Basel) ; 16(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37049196

RESUMO

Ultrafine Polyvinyl alcohol (PVA) fibers have an outstanding potential in various applications, especially in absorbing fields. In this manuscript, an electrostatic-field-assisted centrifugal spinning system was designed to improve the production efficiency of ultrafine PVA fibers from PVA aqueous solution for NH3 adsorption. It was established that the fiber production efficiency using this self-designed system could be about 1000 times higher over traditional electrospinning system. The produced PVA fibers establish high morphology homogeneity. The impact of processing variables of the constructed spinning system including rotation speed, needle size, liquid feeding rate, and voltage on fiber morphology and diameter was systematically investigated by SEM studies. To acquire homogeneous ultrafine PVA fiber membranes, the orthogonal experiment was also conducted to optimize the spinning process parameters. The impact weight of different studied parameters on the spinning performance was thus provided. The experimental results showed that the morphology of micro/nano-fibers can be well controlled by adjusting the spinning process parameters. Ultrafine PVA fibers with the diameter of 2.55 µm were successfully obtained applying the parameters, including rotation speed (6500 rpm), needle size (0.51 mm), feeding rate (3000 mL h-1), and voltage (20 kV). Furthermore, the obtained ultrafine PVA fiber mat was demonstrated to be capable of selectively adsorbing NH3 gas relative to CO2, thus making it promising for NH3 storage and other environmental purification applications.

6.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050361

RESUMO

Maleic anhydride (MA) is introduced to fabricate poly(vinylidene fluoride)/expanded graphite (PVDF/EG) composites via one-step melt mixing. SEM micrographs and WAXD results have demonstrated that the addition of MA helps to exfoliate and disperse the EG well in the PVDF matrix by promoting the mobility of PVDF molecular chains and enhancing the interfacial adhesion between the EG layers and the PVDF. Thus, much higher thermal conductivities are obtained for the PVDF/MA/EG composites compared to the PVDF/EG composites that are lacking MA. For instance, The PVDF/MA/EG composite prepared with a mass ratio of 93:14:7 exhibits a high thermal conductivity of up to 0.73 W/mK. It is 32.7% higher than the thermal conductivity of the PVDF/EG composite that is prepared with a mass ratio of 93:7. Moreover, the introduction of MA leads to an increased melting peak temperature and crystallinity due to an increased nucleation site provided by the uniformly dispersed EG in the PVDF matrix. This study provides an efficient preparation method for PVDF/EG composites with a high thermal conductivity.

7.
Nutrients ; 15(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111058

RESUMO

Single-nucleotide polymorphisms in G protein-coupled receptor 180 (GPR180) are associated with hypertriglyceridemia. The aim of this study was to determine whether hepatic GPR180 impacts lipid metabolism. Hepatic GPR180 was knocked down using two approaches: Gpr180-specific short hairpin (sh)RNA carried by adeno-associated virus 9 (AAV9) and alb-Gpr180-/- transgene established by crossbreeding albumin-Cre mice with Gpr180flox/flox animals, in which Gpr180 was specifically knocked down in hepatocytes. Adiposity, hepatic lipid contents, and proteins related to lipid metabolism were analyzed. The effects of GPR180 on triglyceride and cholesterol synthesis were further verified by knocking down or overexpressing Gpr180 in Hepa1-6 cells. Gpr180 mRNA was upregulated in the liver of HFD-induced obese mice. Deficiency of Gpr180 decreased triglyceride and cholesterol contents in the liver and plasma, ameliorated hepatic lipid deposition in HFD-induced obese mice, increased energy metabolism, and reduced adiposity. These alterations were associated with downregulation of transcription factors SREBP1 and SREBP2, and their target acetyl-CoA carboxylase. In Hepa1-6 cells, Gpr180 knockdown decreased intracellular triglyceride and cholesterol contents, whereas its overexpression increased their levels. Overexpression of Gpr180 significantly reduced the PKA-mediated phosphorylation of substrates and consequent CREB activity. Hence, GPR180 might represent a novel drug target for intervention of adiposity and liver steatosis.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Camundongos Obesos , Camundongos Endogâmicos , Fígado/metabolismo , Metabolismo dos Lipídeos/genética , Obesidade/metabolismo , Triglicerídeos/metabolismo , Colesterol/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Camundongos Endogâmicos C57BL
8.
Front Oncol ; 13: 1081333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845743

RESUMO

Objective: This study aimed to investigate RING-Finger Protein 6 (RNF6) expression in esophageal squamous cell carcinoma (ESCC) cells and whether it affects cell proliferation, invasion, and migration by regulating the TGF-ß1/c-Myb pathway. Methods: TCGA database was used to analyze RNF6 expression in normal tissues and esophageal cancer tissues. Kaplan-Meier method was used to examine the correlation between RNF6 expression and patient prognosis. SiRNA interference vector and RNF6 overexpression plasmid were constructed, and RNF6 was transfected into Eca-109 and KYSE-150 esophageal cancer cell line. In vitro scratch assay and Transwell assay were conducted to investigate the effects of RNF6 on the migration and invasion of Eca-109 and KYSE-150 cells. RT-PCR detected the expression of Snail, E-cadherin, and N-cadherin, and TUNEL detected the apoptosis of cells. Results: RNF6 up-regulation promoted the progression of esophageal cancer and predicted poor prognosis. RNF6 also enhanced the migration and invasion of ESCC cells in vitro. RNF6 silencing inhibited the migration and invasion of ESCC cells. TGF-ß inhibitors reversed the oncogenic effects of RNF6. RNF6 regulated the migration and invasion of ESCC cells by activating the TGF-ß pathway. RNF6/TGF-ß1 promoted esophageal cancer progression through c-Myb. Conclusion: RNF6 promotes the proliferation, invasion, and migration of ESCC cells possibly by activating the TGF-ß1/c-Myb pathway and affects the progression of ESCC.

9.
ACS Nano ; 16(12): 21546-21554, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36449367

RESUMO

Semimetallic two-dimensional (2D) Dirac materials beyond graphene, especially 2D materials with robust Dirac points against the spin-orbit coupling (SOC), are still highly sought. Herein, we theoretically demonstrate the InBi monolayer as a long-sought 2D Dirac material whose exotic Dirac Fermionic states cannot be gapped out by SOC. The InBi monolayer with the litharge crystal structure possesses not only 4-fold band degeneracy, linear energy dispersion, and ultrahigh Fermi velocity in the order of 105 m/s, but also spontaneous ferroelasticity that can lead to the orthorhombic lattice deformation and semimetallic electronic structure. Specifically, the symmetry protected spin-orbit Dirac points in 2D InBi are located at the Brillouin Zone (BZ) boundary and near the Fermi level in energy. More importantly, with coexisting spin-orbit Dirac points and spontaneous ferroelasticity, the InBi monolayer exhibits an additional advantage for engineering Dirac Fermionic states by ferroelastic (FE) strain. Energy levels of Dirac points are strongly coupled to FE strain, and the semimetallic electronic structure of the InBi monolayer is also susceptible to the FE strain induced carrier self-doping effect. Depending on the strain orientation within the InBi monolayer, electron and hole Fermi pockets will develop along the two planar directions, leading to the characteristic transport coefficients (as evidenced by our transport simulations based on Boltzmann formalism) for future experimental detection. FE strain tunable Dirac Fermionic states together with the carrier self-doping effect will benefit future development of ultrathin electronic devices with both high carrier mobility and controllable charge conductivities.

10.
Sensors (Basel) ; 22(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36433246

RESUMO

Three-dimensional multimodality multi-object tracking has attracted great attention due to the use of complementary information. However, such a framework generally adopts a one-stage association approach, which fails to perform precise matching between detections and tracklets, and, thus, cannot robustly track objects in complex scenes. To address this matching problem caused by one-stage association, we propose a novel multi-stage association method, which consists of a hierarchical matching module and a customized track management module. Specifically, the hierarchical matching module defines the reliability of the objects by associating multimodal detections, and matches detections with trajectories based on the reliability in turn, which increases the utilization of true detections, and, thus, guides accurate association. Then, based on the reliability of the trajectories provided by the matching module, the customized track management module sets maximum missing frames with differences for tracks, which decreases the number of identity switches of the same object and, thus, further improves the association accuracy. By using the proposed multi-stage association method, we develop a tracker called MSA-MOT for the 3D multi-object tracking task, alleviating the inherent matching problem in one-stage association. Extensive experiments are conducted on the challenging KITTI benchmark, and the results show that our tracker outperforms the previous state-of-the-art methods in terms of both accuracy and speed. Moreover, the ablation and exploration analysis results demonstrate the effectiveness of the proposed multi-stage association method.


Assuntos
Algoritmos , Atenção , Reprodutibilidade dos Testes
11.
Sensors (Basel) ; 21(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34770463

RESUMO

Lane and road marker segmentation is crucial in autonomous driving, and many related methods have been proposed in this field. However, most of them are based on single-frame prediction, which causes unstable results between frames. Some semantic multi-frame segmentation methods produce error accumulation and are not fast enough. Therefore, we propose a deep learning algorithm that takes into account the continuity information of adjacent image frames, including image sequence processing and an end-to-end trainable multi-input single-output network to jointly process the segmentation of lanes and road markers. In order to emphasize the location of the target with high probability in the adjacent frames and to refine the segmentation result of the current frame, we explicitly consider the time consistency between frames, expand the segmentation region of the previous frame, and use the optical flow of the adjacent frames to reverse the past prediction, then use it as an additional input of the network in training and reasoning, thereby improving the network's attention to the target area of the past frame. We segmented lanes and road markers on the Baidu Apolloscape lanemark segmentation dataset and CULane dataset, and present benchmarks for different networks. The experimental results show that this method accelerates the segmentation speed of video lanes and road markers by 2.5 times, increases accuracy by 1.4%, and reduces temporal consistency by only 2.2% at most.


Assuntos
Fluxo Óptico , Semântica , Algoritmos , Processamento de Imagem Assistida por Computador
12.
Anal Sci ; 37(12): 1695-1700, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34024865

RESUMO

Alpha-fetoprotein (AFP) is an important disease biomarker, relating to cancers such as hepatocarcinomas and gastric cancer. However, traditional methods are time-consuming, relied on bulky instruments and trained professionals, cannot satisfy the demand for low cost and point-of-care testing (POCT). In this study, a power-free POCT device was developed for the rapid and low-cost detection of AFP via one-sampling. Based on the principle of sandwich immunofluorescence, the chip is capable of automatically accomplishing on-chip mixing, labeling and capturing procedures, which only require that operator add 40 µL sample into the chip one time. The proposed device is capable of sensitively detecting human AFP in FBS with a dynamic range of 10 - 1000 ng/mL and LOD (1.88 ng/mL) within a short time of 3 min. Predictably, our method holds a great potential to be applied in the POC diagnostics of proteins, especially for some regions that are resource-limited.


Assuntos
Técnicas Analíticas Microfluídicas , Neoplasias , Biomarcadores Tumorais , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Neoplasias/diagnóstico
13.
Enzyme Microb Technol ; 144: 109737, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33541572

RESUMO

Asprosin is a new hormone released from white adipose tissue (WAT) that not only promotes glucose release in the liver but also activates orexigenic neurons in the hypothalamus to promote appetite and weight gain. Its effect on skeletal muscle glucose uptake is unclear. This research, a stable asprosin expression system was formed by first constructing a eukaryotic expression vector pPIC9K-8His-Asprosin, and then transforming it into the Pichia pastoris strain GS115. Pichia pastoris methanol induction combined with Nickel-NTA magnetic beads purification strategy was used to express and purify asprosin protein. Purified asprosin can promote the phosphorylation of PKA substrate, and intraperitoneal injection of asprosin can increase blood glucose. After proteolysis and detection by mass spectrometry, asprosin was found to have 3 glycosylation sites and multiple glycosyl types. Asprosin up-regulated glucose transporter 4 (GLUT4) expression in myotubes, including mRNA and protein levels. In addition, asprosin enhanced AMP-activated protein kinase (AMPK) phosphorylation, but it had no effect on AKT phosphorylation with or without insulin treatment. Treatment with an AMPK inhibitor (compound C) reduced the asprosin-mediated glucose uptake effect. These results show that purified asprosin activated AMPK signaling in skeletal muscle and further promoted glucose uptake. From the perspective of skeletal muscle uptake of glucose, asprosin may have beneficial effects on type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Peptídicos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fibrilina-1 , Glucose/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Músculo Esquelético/metabolismo , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Fosforilação , Saccharomycetales
14.
Sensors (Basel) ; 20(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751740

RESUMO

Laser-induced graphene (LIG) has the advantages of one-step fabrication, prominent mechanical performance, as well as high conductivity; it acts as the ideal material to fabricate flexible strain sensors. In this study, a wearable flexible strain sensor consisting of three-dimensional (3D) wavy LIG and silicone rubber was reported. With a laser to scan on a polyimide film, 3D wavy LIG could be synthesized on the wavy surface of a mold. The wavy-LIG strain sensor was developed by transferring LIG to silicone rubber substrate and then packaging. For stress concentration, the ultimate strain primarily took place in the troughs of wavy LIG, resulting in higher sensitivity and less damage to LIG during stretching. As a result, the wavy-LIG strain sensor achieved high sensitivity (gauge factor was 37.8 in a range from 0% to 31.8%, better than the planar-LIG sensor), low hysteresis (1.39%) and wide working range (from 0% to 47.7%). The wavy-LIG strain sensor had a stable and rapid dynamic response; its reversibility and repeatability were demonstrated. After 5000 cycles, the signal peak varied by only 2.32%, demonstrating the long-term durability. Besides, its applications in detecting facial skin expansion, muscle movement, and joint movement, were discussed. It is considered a simple, efficient, and low-cost method to fabricate a flexible strain sensor with high sensitivity and structural robustness. Furthermore, the wavy-LIG strain senor can be developed into wearable sensing devices for virtual/augmented reality or electronic skin.


Assuntos
Grafite , Lasers , Elastômeros de Silicone , Dispositivos Eletrônicos Vestíveis , Luz
15.
Analyst ; 144(21): 6415-6421, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31580336

RESUMO

In this study, an electroactive rotaxane, (S,S)-crown-3, consisting of a polymeric chiral ionic liquid as a flexible axle and 18-crown-6 as the wheel, was designed and synthesized. It is worth noting that a stimuli-responsive system was developed, in which the wheel could switch its location between the chiral carbamido group and ionic pair of the ionic polymers under an external force. Next, (S,S)-crown-3 was employed as a modification on the surface of glassy electrode. In contrast to previous study, the developed probe presented a clear discrimination of an electrochemical signal in the absence of Cu(ii). Under the external force (different pH values), l-isomers of amino acids (tryptophan, tyrosine, and cysteine) could form stable host-guest interactions with the chiral carbamido group, producing higher peak currents than the d-isomers. Compared to the absence of the crown, (S,S)-crown-3 showed much better recognition efficiency. The value of IL/ID for tryptophan could reach 39.8. In brief, the present study describes a powerful method for the synthesis of an electroactive rotaxane with great enantiorecognition capability.


Assuntos
Aminoácidos/química , Rotaxanos/química , Rotaxanos/síntese química , Técnicas de Química Sintética , Eletroquímica , Análise Espectral , Estereoisomerismo
16.
Nanomaterials (Basel) ; 9(3)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893787

RESUMO

In order to avoid using toxic or harmful operational conditions, shorten synthesis time, enhance adsorption capacity, and reduce operational cost, a novel magnetic nano-adsorbent of CoFe2O4@SiO2 with core⁻shell structure was successfully functionalized with polypyrrole (Ppy). The physical and chemical properties of CoFe2O4@SiO2-Ppy are examined by various means. The as-prepared CoFe2O4@SiO2-Ppy nanomaterial was used to adsorb Hg2+ from water. During the process, some key effect factors were studied. The adsorption process of Hg2+ onto CoFe2O4@SiO2-Ppy was consistent with the pseudo-second-order kinetic and Langmuir models. The Langmuir capacity reached 680.2 mg/g, exceeding those of many adsorbents. The as-prepared material had excellent regeneration ability, dispersibility, and stability. The fitting of kinetics, isotherms, and thermodynamics indicated the removal was endothermic and spontaneous, and involved some chemical reactions. The application evaluation of electroplating wastewater also shows that CoFe2O4@SiO2-Ppy is an excellent adsorbent for Hg2+ ions from water.

17.
Nanotechnology ; 27(5): 055401, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26671039

RESUMO

Understanding phonon scattering by topological defects in graphene is of particular interest for thermal management in graphene-based devices. We present a study that quantifies the roles of the different mechanisms governing defect phonon scattering by comparing the effects of ten different defect structures using molecular dynamics. Our results show that phonon scattering is mainly influenced by mass density difference, with general trends governed by the defect formation energy and typical softening behaviors in the phonon density of state. The phonon scattering cross-section is found to be far larger than that geometrically occupied by the defects. We also show that the lattice thermal conductivity can be reduced by a factor of up to ~30 in the presence of the grain boundaries formed by these defects.

18.
Langmuir ; 30(19): 5394-403, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24784502

RESUMO

The main objective of this study was to provide novel insights into the mechanism of asphaltene aggregation in toluene/heptane (Heptol) solutions and the effect of alkylphenols on asphaltene dispersion through the integration of advanced experimental and modeling methods. High-resolution transmission electron microscope (HRTEM) images revealed that the onset of asphaltene flocculation occurs near a toluene/heptane volume ratio of 70:30 and that flocculates are well below 1 µm in size. To assess the impact of alkylphenols on asphaltene aggregation, octylphenol (OP) and dodecylphenol (DP) were evaluated by impedance analysis based on their ability to delay the precipitation onset and to reduce the size of nonflocculated asphaltene aggregates in 80:20 toluene/heptane solutions. Although a longer dispersant chain length did not affect the precipitation onset, it reduced the size of the aggregates. Molecular dynamics simulations were then performed to understand the mechanism of interaction between a model asphaltene and OP in heptane. OP molecules saturated the H-bonding sites of asphaltenes and prevented them from interacting laterally between themselves. This explained why OP favored the formation of flocculates with filamentary rather than globular structures, which were clearly observed by HRTEM. Although OP proved to be an effective dispersant, its effectiveness was hindered by its self-association and the fact that it interacted at the periphery of asphaltenes, leaving their aromatic cores uncovered.

19.
Phys Chem Chem Phys ; 15(15): 5472-6, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23474697

RESUMO

In order to pursue the interface effect on the band offset of the semiconductor nanocrystals with the type-I core-shell structure, we have established a theoretical model to elucidate the underlying mechanism based on the atomic-bond-relaxation consideration and continuum mechanics. It was found that the size-dependent interface bond-nature-factor of the core-shell nanocrystals can be deduced on the basis of the proposed model. Taking the typical CdSe-ZnSe nanostructure as an example, we showed that the theoretical results were consistent with the experimental observations. These investigations provided a useful guide in opening up the possibility to engineer nanodevices with special optoelectronic properties.


Assuntos
Pontos Quânticos , Compostos de Cádmio/química , Eletrônica , Modelos Químicos , Nanoestruturas/química , Nanotecnologia , Compostos de Selênio/química , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...