Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Oral Sci ; 16(1): 35, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719825

RESUMO

The efficient clinical treatment of oral squamous cell carcinoma (OSCC) is still a challenge that demands the development of effective new drugs. Phenformin has been shown to produce more potent anti-tumor activities than metformin on different tumors, however, not much is known about the influence of phenformin on OSCC cells. We found that phenformin suppresses OSCC cell proliferation, and promotes OSCC cell autophagy and apoptosis to significantly inhibit OSCC cell growth both in vivo and in vitro. RNA-seq analysis revealed that autophagy pathways were the main targets of phenformin and identified two new targets DDIT4 (DNA damage inducible transcript 4) and NIBAN1 (niban apoptosis regulator 1). We found that phenformin significantly induces the expression of both DDIT4 and NIBAN1 to promote OSCC autophagy. Further, the enhanced expression of DDIT4 and NIBAN1 elicited by phenformin was not blocked by the knockdown of AMPK but was suppressed by the knockdown of transcription factor ATF4 (activation transcription factor 4), which was induced by phenformin treatment in OSCC cells. Mechanistically, these results revealed that phenformin triggers endoplasmic reticulum (ER) stress to activate PERK (protein kinase R-like ER kinase), which phosphorylates the transitional initial factor eIF2, and the increased phosphorylation of eIF2 leads to the increased translation of ATF4. In summary, we discovered that phenformin induces its new targets DDIT4 and especially NIBAN1 to promote autophagic and apoptotic cell death to suppress OSCC cell growth. Our study supports the potential clinical utility of phenformin for OSCC treatment in the future.


Assuntos
Autofagia , Carcinoma de Células Escamosas , Proliferação de Células , Estresse do Retículo Endoplasmático , Neoplasias Bucais , Fenformin , Fatores de Transcrição , Fenformin/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Neoplasias Bucais/tratamento farmacológico , Autofagia/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Camundongos , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Western Blotting
2.
Inflammation ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041730

RESUMO

The management of skin wound healing is still a challenge. MicroRNA-21 (miR-21) has been reported to play important roles in wound repair; however, the underlying mechanism needs to be further clarified. The present study aimed to study the direct role of miR-21 in skin wound healing in miR-21 KO mice and to investigate the role of miR-21 in controlling the migration and proliferation of primary human skin cells and its underlying mechanism(s). miR-21 KO and wild-type (WT) mice were used for in vivo wound healing assays, while mouse and human primary skin cells were used for in vitro assays. miR-21 inhibitors or mimics or negative control small RNAs were transfected to either inhibit or enhance miR-21 expression in the human primary dermal fibroblasts or epidermal cells. RNA sequencing analysis was performed to identify the potential molecular pathways involved. We found that the loss of miR-21 resulted in slower wound healing in miR-21 KO mouse skin and especially delayed the healing of dermal tissue. In vitro assays demonstrated that the reduced expression of miR-21 caused by its inhibitor inhibited the migration of human primary dermal fibroblasts, which could be enhanced by increased miR-21 expression caused by miR-21 mimics. RNA-sequence analysis revealed that the inhibition of miR-21 expression downregulated the inflammatory response pathways associated with the decreased expression of inflammatory cytokines, and the addition of IL-1ß into the culture medium enhanced the migration and proliferation of dermal fibroblasts in vitro. In conclusion, miR-21 in dermal fibroblasts can promote the migration and growth of epidermal and dermal cells to enhance skin wound healing through controlling the expression of inflammatory cytokines.

3.
Front Oncol ; 12: 943477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158698

RESUMO

Exosomes secreted by cancer cells are important components in the tumor microenvironment, enabling cancer cells to communicate with each other and with noncancerous cells to play important roles in tumor progression and metastasis. Phenformin, a biguanide antidiabetic drug, has been reported to have a strong antitumor function in multiple types of cancer cells, however little research has been reported about whether phenformin can regulate the secretion of exosomes by cancer cells to regulate the tumor microenvironment and contribute to its antitumor function. Here we found that exosomes (Phen-Exo) derived from phenformin-treated oral squamous cell carcinoma (OSCC) cells significantly suppress the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. The inhibition of angiogenesis by Phen-Exo was verified in vivo by matrigel plug angiogenesis assays and by chick chorioallantoic membrane assays. Mechanistically, we discovered that the expression of microRNA-1246 (miR-1246) and microRNA-205 (miR-205) was significantly increased in exosomes secreted by OSCC cells treated with phenformin, while high expression levels of miR-1246 or miR-205 in vascular endothelial cells inhibited their angiogenic effects and decreased expression of the angiogenic factor VEGFA. In conclusion, these results reveal that phenformin can inhibit angiogenesis by regulating the levels of miR-1246 and miR-205 in exosomes secreted by OSCC cells, suggesting that phenformin has the potential to alter the tumor microenvironment to antagonize the growth of OSCCs, which provides a theoretical basis for developing new strategies to treat OSCCs in the future.

4.
Cells ; 11(15)2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35954273

RESUMO

The treatment of many skin inflammation diseases, such as psoriasis and atopic dermatitis, is still a challenge and inflammation plays important roles in multiple stages of skin tumor development, including initiation, promotion and metastasis. Phenformin, a biguanide drug, has been shown to play a more efficient anti-tumor function than another well-known biguanide drug, metformin, which has been reported to control the expression of pro-inflammatory cytokines; however, little is known about the effects of phenformin on skin inflammation. This study used a mouse acute inflammation model, ex vivo skin organ cultures and in vitro human primary keratinocyte cultures to demonstrate that phenformin can suppress acute skin inflammatory responses induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in vivo and significantly suppresses the pro-inflammatory cytokines IL-1ß, IL-6 and IL-8 in human primary keratinocytes in vitro. The suppression of pro-inflammatory cytokine expression by phenformin was not directly through regulation of the MAPK or NF-κB pathways, but by controlling the expression of c-Myc in human keratinocytes. We demonstrated that the overexpression of c-Myc can induce pro-inflammatory cytokine expression and counteract the suppressive effect of phenformin on cytokine expression in keratinocytes. In contrast, the down-regulation of c-Myc produces effects similar to phenformin, both in cytokine expression by keratinocytes in vitro and in skin inflammation in vivo. Finally, we showed that phenformin, as an AMPK activator, down-regulates the expression of c-Myc through regulation of the AMPK/mTOR pathways. In summary, phenformin inhibits the expression of pro-inflammatory cytokines in keratinocytes through the down-regulation of c-Myc expression to play an anti-inflammation function in the skin.


Assuntos
Citocinas , Dermatite Atópica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Citocinas/metabolismo , Dermatite Atópica/metabolismo , Humanos , Inflamação/metabolismo , Queratinócitos/metabolismo , Camundongos , Fenformin/farmacologia , Fenformin/uso terapêutico
5.
Front Cell Dev Biol ; 10: 921663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784474

RESUMO

Mesenchymal stem cells (MSCs) within the periodontal ligament (PDL), termed periodontal ligament stem cells (PDLSCs), have a self-renewing capability and a multidirectional differentiation potential. The molecular mechanisms that regulate multidirectional differentiation, such as the osteogenic differentiation of PDLSCs, remain to be elucidated. Cullin 4B (CUL4B), which assembles the CUL4B-RING ubiquitin ligase (CRL4B) complex, is involved in regulating a variety of developmental and physiological processes including the skeletal development and stemness of cancer stem cells. However, nothing is known about the possible role of CUL4B in the osteogenic differentiation of PDLSCs. Here, we found that knockdown of CUL4B decreased the proliferation, migration, stemness and osteogenic differentiation ability of PDLSCs. Mechanistically, we demonstrate that CUL4B cooperates with the PRC2 complex to repress the expression of miR-320c and miR-372/373-3p, which results in the upregulation of RUNX2, a master transcription factor (TF) that regulates osteogenic differentiation. In brief, the present study reveals the role of CUL4B as a new regulator of osteogenic differentiation in PDLSCs.

6.
Front Cell Dev Biol ; 10: 879877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557954

RESUMO

Physiological root resorption of deciduous teeth is a normal phenomenon. How the angiogenesis process is regulated to provide adequate levels of oxygen and nutrients in hypoxic conditions when the dental pulp tissue is reduced at the stage of root resorption is not fully understood. In this study, we designed hypoxic preconditioning (2%) to mimic the physiological conditions. We isolated exosomes from hypoxic-preconditioned SHED (Hypo-exos) cells and from normally cultured SHED cells (Norm-exos). We found that treatment with Hypo-exos significantly enhanced the growth, migration and tube formation of endothelial cells in vitro compared with Norm-exos. We also performed matrigel plug assays in vivo and higher expression of VEGF and higher number of lumenal structures that stained positive for CD31 were found in the Hypo-exos treated group. To understand the potential molecular mechanism responsible for the positive effects of Hypo-exos, we performed exosomal miRNA sequencing and validated that Hypo-exos transferred both let-7f-5p and miR-210-3p to promote the tube formation of endothelial cells. Further study revealed that those two miRNAs regulate angiogenesis via the let-7f-5p/AGO1/VEGF and/or miR-210-3p/ephrinA3 signal pathways. Finally, we found that the increased release of exosomes regulated by hypoxia treatment may be related to Rab27a. Taking these data together, the present study demonstrates that exosomes derived from hypoxic-preconditioned SHED cells promote angiogenesis by transferring let-7f-5p and miR-210-3p, which suggests that they can potentially be developed as a novel therapeutic approach for pro-angiogenic therapy in tissue regeneration engineering.

7.
Stem Cell Res Ther ; 13(1): 89, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241153

RESUMO

BACKGROUND: Anti-angiogenic therapy has been shown to be a promising strategy for anti-tumor treatment. Increasing evidence indicates that tumor angiogenesis is affected by exosomes that are secreted by mesenchymal stem cells (MSCs), but whether exosomes derived from MSCs suppress or promote angiogenesis remain paradoxical. The purpose of this study focused on understanding the potential role of exosomes derived from stem cells of human deciduous exfoliated teeth (SHED-Exos) in regulating angiogenesis and the underlying molecular mechanism. METHODS: Exosomes were isolated from supernatants of SHED cells using an exosome purification kit and were characterized by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis. Cell Counting Kit-8, flow cytometric assays, western blots, wound healing and transwell migration assays were performed to characterize the roles of SHED-Exos on cell proliferation, apoptosis and migration of human umbilical vein endothelial cells (HUVECs). The anti-angiogenic activity of SHED-Exos was assessed via a tube formation assay of endothelial cells and angiogenesis-related factors were analyzed by western blotting. In vivo, we used the chick chorioallantoic membrane (CAM) assay and an oral squamous cell carcinoma (OSCC) xenograft transplantation model with nude mice that received multi-point injections at three-day intervals to evaluate the effects on angiogenesis. Furthermore, the sequencing of microRNAs (miRNAs) in SHED-Exos was performed to investigate the underlying anti-angiogenic mechanism. RESULTS: The results showed that SHED-Exos inhibit cell proliferation and migration and induce apoptosis in HUVECs. SHED-Exos suppress the tube-like structure formation of HUVECs in vitro. SHED-Exos downregulate several angiogenesis-related factors, including VEGFA, MMP-9 and ANGPT1. In vivo, the chick CAM assay verified that treatment with SHED-Exos inhibits micro-vascular formation, and importantly, significantly reduces the micro-vascular formation of tumors generated from xenografted OSCC cells, which was associated with the inhibition of tumor growth in vivo. Mechanistically, our data suggested that SHED-Exos are enriched with miR-100-5p and miR-1246 and are transferred to endothelial cells, which results in decreased tube formation via the down-regulation of VEGFA expression. CONCLUSIONS: These results demonstrate that SHED-Exos inhibit angiogenesis in vitro and in vivo, which suggests that SHED-Exos could potentially serve as a novel and effective therapeutic approach for anti-angiogenic treatment.


Assuntos
Carcinoma de Células Escamosas , Exossomos , MicroRNAs , Neoplasias Bucais , Animais , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Exossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/metabolismo , Células-Tronco/metabolismo
8.
Front Cell Dev Biol ; 9: 720111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350189

RESUMO

Mutations of H-Ras, a member of the RAS family, are preferentially found in cutaneous squamous cell carcinomas (SCCs). H-Ras has been reported to induce autophagy, which plays an essential role in tissue homeostasis in multiple types of cancer cells and in fibroblasts, however, the potential role of H-Ras in regulating autophagy in human keratinocytes has not been reported. In this study, we found that the stable expression of the G12V mutant of H-RAS (H-Ras G12V ) induced autophagy in human keratinocytes, and interestingly, the induction of autophagy was strongly blocked by inhibiting the calcineurin/nuclear factor of activated T cells (NFAT) pathway with either a calcineurin inhibitor (Cyclosporin A) or a NFAT inhibitor (VIVIT), or by the small interfering RNA (siRNA) mediated knockdown of calcineurin B1 or NFATc1 in vitro, as well as in vivo. To characterize the role of the calcineurin/NFAT pathway in H-Ras induced autophagy, we found that H-Ras G12V promoted the nuclear translocation of NFATc1, an indication of the activation of the calcineurin/NFAT pathway, in human keratinocytes. However, activation of NFATc1 either by the forced expression of NFATc1 or by treatment with phenformin, an AMPK activator, did not increase the formation of autophagy in human keratinocytes. Further study revealed that inhibiting the calcineurin/NFAT pathway actually suppressed H-Ras expression in H-Ras G12V overexpressing cells. Finally, chromatin immunoprecipitation (ChIP) assays showed that NFATc1 potentially binds the promoter region of H-Ras and the binding efficiency was significantly enhanced by the overexpression of H-Ras G12V , which was abolished by treatment with the calcineurin/NFAT pathway inhibitors cyclosporine A (CsA) or VIVIT. Taking these data together, the present study demonstrates that the calcineurin/NFAT signaling pathway controls H-Ras expression and interacts with the H-Ras pathway, involving the regulation of H-Ras induced autophagy in human keratinocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...