Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Virus Genes ; 59(3): 410-416, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781819

RESUMO

Avian influenza virus (AIV) infection can lead to severe economic losses in the poultry industry and causes a serious risk for humans. A rapid and simple test for suspected viral infection cases is crucial. In this study, a reverse transcription recombinase-aided amplification assay (RT-RAA) for the rapid detection of all AIV subtypes was developed. The reaction temperature of the assays is at 39 °C and the detection process can be completed in less than 20 min. The specificity results of the assay showed that this method had no cross-reaction with other main respiratory viruses that affect birds, including Newcastle disease virus (NDV) and infectious bronchitis virus (IBV). The analytical sensitivity at a 95% confidence interval was 102 RNA copies per reaction. In comparison with a published assay for reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), the κ value of the RT-RAA assay in 384 avian clinical samples was 0.942 (p < 0.001). The sensitivity and specificity of the RT-RAA assay for avian clinical sample detection was determined as 97.59% (95% CI 93.55-99.23%) and 96.79% (95% CI 93.22-98.59%), respectively. The RT-RAA assay for AIV in this study provided an effective and practicable tool for AIV molecular detection.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Transcrição Reversa , Influenza Aviária/diagnóstico , Recombinases/genética , Recombinases/metabolismo , Vírus da Influenza A/genética , Aves/genética , Sensibilidade e Especificidade
3.
BMC Vet Res ; 19(1): 5, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624468

RESUMO

BACKGROUND: Fowl adenovirus is of major concern to the poultry industry worldwidely. In order to monitor the prevalent status of Fowl adenovirus in China, a total of 1920 clinical samples from apparently healthy birds in the 25 sites of poultry flocks, Slaughterhouse and living bird markets from 8 provinces in eastern China were collected and detected by PCR, sequencing, and phylogenetic analysis. RESULTS: The epidemiological survey showed that Fowl adenoviruses were detected in living bird markets, and circulating in a variety of fowl species, including chickens, ducks, goose and pigeons. Among the 1920 clinical samples, 166 samples (8.65%) were positive in the fowl adenovirus PCR detection. In this study, totally all the 12 serotypes (serotypes of 1, 2, 3, 4, 5, 6, 7, 8A, 8B, 9, 10 and 11) fowl adenoviruses were detected, the most prevalent serotype was serotype 1. Phylogenetic analysis indicated that 166 FAdVs of 12 serotypes were divided into 5 fowl adenovirus species (Fowl aviadenovirus A, B, C, D, E). CONCLUSIONS: In the epidemiological survey, 8.65% of the clinical samples from apparently healthy birds were positive in the fowl adenovirus PCR detection. Totally all the 12 serotypes fowl adenoviruses were detected in a variety of fowl species, which provided abundant resources for the research of fowl adenoviruses in China. The newly prevalent FAdV serotypes provides valuable information for the development of an effective control strategy for FAdV infections in fowls.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves Domésticas , Animais , Doenças das Aves Domésticas/epidemiologia , Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/veterinária , Epidemiologia Molecular , Filogenia , Galinhas , Aviadenovirus/genética , China/epidemiologia , Sorogrupo
4.
Virol J ; 19(1): 129, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907986

RESUMO

BACKGROUND: The H5 subtype avian influenza virus (AIV) has caused huge economic losses to the poultry industry and is a threat to human health. A rapid and simple test is needed to confirm infection in suspected cases during disease outbreaks. METHODS: In this study, we developed a reverse transcription recombinase-aided amplification (RT-RAA) assay for the detection of H5 subtype AIV. Assays were performed at a single temperature (39 °C), and the results were obtained within 20 min. RESULTS: The assay showed no cross-detection with Newcastle disease virus or infectious bronchitis virus. The analytical sensitivity was 103 RNA copies/µL at a 95% confidence interval according to probit regression analysis, with 100% specificity. Compared with published reverse transcription quantitative real-time polymerase chain reaction assays, the κ value of the RT-RAA assay in 420 avian clinical samples was 0.983 (p < 0.001). The sensitivity for avian clinical sample detection was 97.26% (95% CI, 89.56-99.52%), and the specificity was 100% (95% CI, 98.64-100%). CONCLUSIONS: These results indicated that our RT-RAA assay may be a valuable tool for detecting H5 subtype AIV.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Aves , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Influenza Aviária/diagnóstico , Recombinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa , Sensibilidade e Especificidade
5.
PLoS One ; 17(6): e0270708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35763505

RESUMO

In order to develop an appropriate method for high-throughput detection of avian metapneumovirus, a quadruple real-time reverse-transcription polymerase chain reaction assay was established with four pairs of specific primers and four specific probes based on the G or M gene of aMPV-A, aMPV-B, aMPV-C and aMPV-D. Its specificity and sensitivity were evaluated, and clinical samples were tested by the method. The results showed that all the four subgroups of avian metapneumovirus can be detected in the quadruple real-time RT-PCR assay simultaneously, with a detection limit of 100-1000 cRNA copies/reaction. The other common poultry viruses were negative. In the avian clinical sample detection, 39 out of 1920 clinical samples collected from 8 provinces were positive. Compared with published RT-PCR assays, the κ value of the quadruple real-time RT-PCR assay in 1920 avian clinical samples was 1.000 (P < 0.001). The established method could be used for the rapid detection of the four subgroups of avian metapneumovirus with high specificity and high sensitivity.


Assuntos
Metapneumovirus , Doenças das Aves Domésticas , Animais , Aves/genética , Metapneumovirus/genética , Doenças das Aves Domésticas/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
6.
PLoS One ; 17(2): e0264308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35226672

RESUMO

Avian astroviruses (AAstVs) have caused major problem for poultry breeding industries in China in recent years, and the goose gout caused by goose astrovirus has produced particularly great economic losses. To better understand the prevalence and genetic diversity of AAstVs in China, 1210 poultry samples collected from eight provinces were tested with reverse transcription-polymerase chain reaction (RT-PCR) to detect AAstV infections in different poultry populations. Then, Open reading frames 2 (ORF2) was amplified by specific primers, and the genetic evolution was analyzed. Our surveillance data demonstrate the diversity of AAstVs in China insofar as we detected 17 AAstVs, including seven chicken astroviruses (CAstVs), five avian nephritis viruses (ANVs), two goose astroviruses (GoAstVs), two duck astrovirus (DAstVs), and one new AAstV belonging to Avastrovirus Group 3. The positive rate of AAstV infection was 1.40%. Host analysis showed that CAstVs and ANVs were isolated from chickens, DAstVs and GoAstVs were isolated from ducks. Host-species-specific AAstVs infections were also identified in numerous samples collected at each stage of production. This study provides further evidence to better understand the epidemiology of AAstVs in different species of poultry in China.


Assuntos
Infecções por Astroviridae/genética , Avastrovirus/genética , Galinhas/virologia , Patos/virologia , Gansos/virologia , Variação Genética , Genoma Viral , Doenças das Aves Domésticas , Animais , Filogenia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia
7.
Virus Res ; 306: 198566, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582833

RESUMO

Coronavirus disease 2019 (COVID-19), caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first reported in Wuhan, China, and rapidly spread throughout the world. This newly emerging pathogen is highly transmittable and can cause fatal disease. More than 35 million cases have been confirmed, with a fatality rate of about 2.9% to October 9, 2020. However, the original and intermediate hosts of SARS-CoV-2 remain unknown. Here, 3160 poultry samples collected from 14 provinces of China between September and December 2019 were tested for SARS-CoV-2 infection. All the samples were SARS-CoV-2 negative, but 593 avian coronaviruses were detected, including 485 avian infectious bronchitis viruses, 72 duck coronaviruses, and 36 pigeon coronaviruses, with positivity rates of 15.35%, 2.28%, and 1.14%, respectively. Our surveillance demonstrates the diversity of avian coronaviruses in China, with higher prevalence rates in some regions. Furthermore, the possibility that SARS-CoV-2 originated from a known avian-origin coronavirus can be preliminarily ruled out. More surveillance of and research into avian coronaviruses are required to better understand the diversity, distribution, cross-species transmission, and clinical significance of these viruses.


Assuntos
Doenças das Aves/virologia , Infecções por Coronavirus/veterinária , Coronavirus/genética , Coronavirus/isolamento & purificação , Variação Genética , Animais , Doenças das Aves/epidemiologia , Galinhas/virologia , China/epidemiologia , Columbidae/virologia , Coronavirus/classificação , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Patos/virologia , Monitoramento Epidemiológico , Gansos/virologia , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
8.
PeerJ ; 9: e10748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717667

RESUMO

BACKGROUND: Avian paramyxoviruses (APMVs), also termed avian avulaviruses, are of a vast diversity and great significance in poultry. Detection of all known APMVs is challenging, and distribution of APMVs have not been well investigated. METHODS: A set of reverse transcription polymerase chain reaction (RT-PCR) assays for detection of all known APMVs were established using degenerate primers targeting the viral polymerase L gene. The assays were preliminarily evaluated using in-vitro transcribed double-stranded RNA controls and 24 known viruses, and then they were employed to detect 4,346 avian samples collected from 11 provinces. RESULTS: The assays could detect 20-200 copies of the double-stranded RNA controls, and detected correctly the 24 known viruses. Of the 4,346 avian samples detected using the assays, 72 samples were found positive. Of the 72 positives, 70 were confirmed through sequencing, indicating the assays were specific for APMVs. The 4,346 samples were also detected using a reported RT-PCR assay, and the results showed this RT-PCR assay was less sensitive than the assays reported here. Of the 70 confirmed positives, 40 were class I Newcastle disease virus (NDV or APMV-1) and 27 were class II NDV from poultry including chickens, ducks, geese, and pigeons, and three were APMV-2 from parrots. The surveillance identified APMV-2 in parrots for the first time, and revealed that prevalence of NDVs in live poultry markets was higher than that in poultry farms. The surveillance also suggested that class I NDVs in chickens could be as prevalent as in ducks, and class II NDVs in ducks could be more prevalent than in chickens, and class II NDVs could be more prevalent than class I NDVs in ducks. Altogether, we developed a set of specific and sensitive RT-PCR assays for detection of all known APMVs, and conducted a large-scale surveillance using the assays which shed novel insights into APMV epidemiology.

9.
Transbound Emerg Dis ; 67(5): 1981-1990, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32163661

RESUMO

Coronaviruses (CoVs) are found in humans and a wide variety of wild and domestic animals, and of substantial impact on human and animal health. In poultry, the genetic diversity, evolution, distribution and taxonomy of CoVs dominant in birds other than chickens remain enigmatic. In our previous study, we proposed that the CoVs dominant (i.e. mainly circulating) in ducks (DdCoVs) should represent a novel species, which was different from the one represented by the CoVs dominant in chickens (CdCoVs). In this study, we conducted a large-scale surveillance of CoVs in chickens, ducks, geese, pigeons and other birds (quails, sparrows and partridges) using a conserved RT-PCR assay. The surveillance demonstrated that CdCoVs, DdCoVs and the CoVs dominant in pigeons (PdCoVs) belong to different lineages, and they are all prevalent in live poultry markets and the backyard flocks in some regions of China. We further sequenced seven Coronaviridae-wide conserved domains in their replicase polyprotein pp1ab of seven PdCoVs and found that the genetic distances in these domains between PdCoVs and DdCoVs or CdCoVs are large enough to separate PdCoVs into a novel species, which were different from the ones represented by DdCoVs or CdCoVs within the genus Gammacoronavirus, per the species demarcation criterion of International Committee on Taxonomy of Viruses. This report shed novel insight into the genetic diversity, distribution, evolution and taxonomy of avian CoVs.

10.
Transbound Emerg Dis ; 67(4): 1463-1471, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32065513

RESUMO

In recent decades, multiple subtypes (i.e. H9N2, H5N1 and H7N9) of avian influenza virus (AIV) have become widespread in China, which has caused enormous economic losses and posed considerable threats to public health. In this review, with the aim to provide insights into and guidelines for the control of AIV spread in China and globally in the future, we analysed the reasons why AIV has persisted in China based on socio-economic features, including poultry biosecurity, live bird markets, live bird transportation, wild birds, poultry waterfowl, poultry density, poultry population and infected birds. We also described the present status of the AIV subtypes H9, H5 and H7 in China to elucidate the effectiveness of the strategies currently employed in China (i.e. culling, mass vaccination and biosecurity improvement) to control the disease based on a literature review and our unpublished surveillance data collected over a 12-year period from 2007 to 2018. We then summarized the lessons to be learned from the control experience in China, including whether culling of infected birds is of limited value for disease control and whether improved biosecurity is a better option than culling and vaccination for the long-term control of AIV, and when the vaccine strain should be updated.


Assuntos
Surtos de Doenças/veterinária , Virus da Influenza A Subtipo H5N1/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/prevenção & controle , Vacinação em Massa/veterinária , Abate de Animais , Animais , Aves , China/epidemiologia , Guias como Assunto , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Aves Domésticas
11.
Emerg Infect Dis ; 26(2)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31855533

RESUMO

In China, influenza A(H7N9) virus appeared in 2013, then mutated into a highly pathogenic virus, causing outbreaks among poultry and cases in humans. Since September 2017, extensive use of the corresponding vaccine, H7-Re1, successfully reduced virus prevalence. However, in 2019, a novel antigenic variant emerged, posing considerable economic and public health threats.A.

12.
Virol J ; 16(1): 85, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31242907

RESUMO

BACKGROUND: Type A influenza viruses (IAVs) cause significant infections in humans and multiple species of animals including pigs, horses, birds, dogs and some marine animals. They are of complicated phylogenetic diversity and distribution, and analysis of their phylogenetic diversity and distribution from a panorama view has not been updated for multiple years. METHODS: 139,872 protein sequences of IAVs from GenBank were selected, and they were aligned and phylogenetically analyzed using the software tool MEGA 7.0. Lineages and subordinate lineages were classified according to the topology of the phylogenetic trees and the host, temporal and spatial distribution of the viruses, and designated using a novel universal nomenclature system. RESULTS: Large phylogenetic trees of the two external viral genes (HA and NA) and six internal genes (PB2, PB1, PA, NP, MP and NS) were constructed, and the diversity and the host, temporal and spatial distribution of these genes were calculated and statistically analyzed. Various features regarding the diversity and distribution of IAVs were confirmed, revised or added through this study, as compared with previous reports. Lineages and subordinate lineages were classified and designated for each of the genes based on the updated panorama views. CONCLUSIONS: The panorama views of phylogenetic diversity and distribution of IAVs and their nomenclature system were updated and assumed to be of significance for studies and communication of IAVs.


Assuntos
Evolução Molecular , Variação Genética , Vírus da Influenza A/genética , Filogenia , Sequência de Aminoácidos , Animais , Aves/virologia , Quirópteros/virologia , Cães/virologia , Genes Virais , Cavalos/virologia , Humanos , Suínos/virologia
14.
Transbound Emerg Dis ; 66(4): 1758-1761, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30903740

RESUMO

H7N9 subtype avian influenza viruses (AIV) circulating in China over recent years have had an enormous impact on public health and economy. During the period between November 2016 and April 2017, an increase in human infections caused by these viruses was reported, with rapid emergence and spread of variants in China. Consequently, the government of China implemented a controversial vaccination strategy in September 2017. Here, we provide evidence of the prevalence of H7N9 AIVs in China based on systematic large-scale surveillance in poultry during 2013-2018. Emerging variants were confirmed as highly pathogenic in chickens using the intravenous pathogenicity index (IVPI) test. The currently available vaccine provided complete protection against the H7N9 HPAIV challenge in chickens. The collective findings clearly indicate that the vaccination strategy implemented not only significantly decreases the prevalence of H7N9 AIVs in poultry but also effectively prevents human infection with H7N9 viruses.


Assuntos
Monitoramento Epidemiológico/veterinária , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Vacinação/veterinária , Animais , Galinhas , China/epidemiologia , Columbidae , Patos , Gansos , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/virologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Prevalência , Virulência
15.
PLoS One ; 14(2): e0211553, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30785912

RESUMO

With rapidly increasing animal pathogen surveillance requirements, new technologies are needed for a comprehensive understanding of the roles of pathogens in the occurrence and development of animal diseases. We applied metagenomic technology to avian virus surveillance to study the main viruses infecting six poultry farms in two provinces in eastern China. Cloacal/throat double swabs were collected from 60 birds at each farm according to a random sampling method. The results showed that the method could simultaneously detect major viruses infecting farms, including avian influenza virus, infectious bronchitis virus, Newcastle disease virus, rotavirus G, duck hepatitis B virus, and avian leukemia virus subgroup J in several farms. The test results were consistent with the results from traditional polymerase chain reaction (PCR) or reverse transcription-PCR analyses. Five H9N2 and one H3N8 avian influenza viruses were detected at the farms and were identified as low pathogenic avian influenza viruses according to HA cleavage sites analysis. One detected Newcastle disease virus was classified as Class II genotype I and avirulent type according to F0 cleavage sites analysis. Three avian infectious bronchitis viruses were identified as 4/91, CK/CH/LSC/99I and TC07-2 genotypes by phylogenetic analysis of S1 genes. The viral infection surveillance method using metagenomics technology enables the monitoring of multiple viral infections, which allows the detection of main infectious viruses.


Assuntos
Monitoramento Epidemiológico/veterinária , Doenças das Aves Domésticas/virologia , Vírus de RNA/genética , Viroses/epidemiologia , Animais , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/virologia , Metagenômica/métodos , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/genética , Filogenia , Aves Domésticas/virologia , Vírus de RNA/classificação , RNA Viral/química , Análise de Sequência de RNA , Viroses/virologia
16.
Transbound Emerg Dis ; 66(2): 897-907, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30536738

RESUMO

Canine parvovirus 2 (CPV-2) infection is responsible for large numbers of animal deaths worldwide and is one of the most dangerous infectious diseases in young puppies. Twenty-four rectal swabs were collected from dogs with clinical signs of vomiting and haemorrhagic diarrhoea and were initially verified to be infected with CPV-2 using colloidal gold test strips. From the 24 CPV-positive samples, complete genome of 5050-5054 nucleotides was sequenced with a next-generation sequencing platform. Characteristics of the Open Reading Frames from different CPV-2 strains detected in this study were analyzed. Several VP2 point mutations were discovered, and demonstrated the co-circulation of new CPV-2a, new CPV-2b and CPV-2c in Sichuan province of China. The analysis results of the Chinese CPV-2 retrieved from the NCBI nucleotide, showed that new CPV-2a has become the predominant variant in some provinces of China. Phylogenetic analysis of global VP2 and NS1 nucleotide sequences revealed certain correlations among geographical regions, types and circulating time, which lays the foundation for further research concerning the epidemiology, genetic variation, vaccination and molecular evolutionary relationships of the CPV-2 identified at different times and from different regions.


Assuntos
Doenças do Cão/virologia , Genoma Viral/genética , Infecções por Parvoviridae/veterinária , Parvovirus Canino/genética , Animais , Sequência de Bases , China/epidemiologia , DNA Viral/genética , Doenças do Cão/epidemiologia , Cães , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/virologia , Filogenia , Prevalência , Proteínas Virais/genética
17.
Infect Genet Evol ; 65: 91-95, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30031927

RESUMO

To investigate the prevalence and evolution of the H6 subtype avian influenza viruses (AIVs) circulating in poultry in China from 2011 to 2016, 11 molecular epidemiological surveys was performed in this study. In total, 893 H6 subtype viral strains were isolated from 67,639 swab samples and 360 environmental samples. From these strains, 35 representative strains were selected and their whole genomic sequences determined. According to a phylogenetic analysis and molecular characterization, all 35 viral strains belonged to the Eurasian avian lineage. All of them were categorized as 'low pathogenic' and a few strains had some bioinformatical mutations. This epidemiological survey shows that the prevalence of H6 subtype AIVs increased from 2012 to 2016 in China, and suggests that infections by H6 subtype AIVs in China has increased in recent years.


Assuntos
Genoma Viral , Genômica , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , China/epidemiologia , Genes Virais , Genômica/métodos , Genótipo , História do Século XXI , Influenza Aviária/história , Epidemiologia Molecular , Filogenia , Aves Domésticas , Vigilância em Saúde Pública , RNA Viral
18.
Virus Genes ; 54(4): 536-542, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29744712

RESUMO

Next generation sequencing (NGS) is a powerful tool for the characterization, discovery, and molecular identification of RNA viruses. There were multiple NGS library preparation methods published for strand-specific RNA-seq, but some methods are not suitable for identifying and characterizing RNA viruses. In this study, we report a NGS library preparation method to identify RNA viruses using the Ion Torrent PGM platform. The NGS sequencing adapters were directly inserted into the sequencing library through reverse transcription and polymerase chain reaction, without fragmentation and ligation of nucleic acids. The results show that this method is simple to perform, able to identify multiple species of RNA viruses in clinical samples.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Animais , China , Cloaca/virologia , Fezes/virologia , Aves Domésticas , Vírus de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Traqueia/virologia
19.
Virus Res ; 237: 22-26, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28501627

RESUMO

Virome (viral megagenomics) detection using next generation sequencing has been widely applied in virology, but its methods remain complicated and need optimization. In this study, we detected the viromes of RNA viruses of one mock sample, one pooled duck feces sample and one pooled mink feces sample on the Personal Genome Machine platform using the sequencing libraries prepared by three methods. The sequencing primers were added through random hybridization and ligation to fragmented viral RNA using a RNA-Seq kit in method 1, through random reverse transcription (RT) and polymerase chain reaction (PCR) in method 2 which was developed in our laboratory, and through hybridization and ligation to fragmented amplicons of random RT-PCR using a single primer in method 3. Although the results of these three samples (nine libraries) all showed that more classified viral families and genera were identified using methods 2 and 3 than using method 1, and more classified viral families and genera were identified using method 2 than using method 3, most of the differences were of no statistical significance. Moreover, 11 mammalian viral genera in minks were possibly identified for the first time through this study.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenoma , Metagenômica/métodos , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Animais , Primers do DNA/genética , Patos , Fezes/virologia , Vison , Vírus de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
20.
Virus Res ; 233: 1-7, 2017 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-28268176

RESUMO

Pigeon circovirus (PiCV) was detected by PCR in pigeons from China. Altogether, 48 out of 244 pigeons tested positive for PiCV (positive rate, 19.67%), suggesting that the virus was prevalent in China. From the 48 PiCV-positive samples, about 2040bp complete genome fragments were obtained by full length genome amplification and sequenced with a next-generation sequencing platform. Characteristics of the ORFs from different PiCV strains tested in this study were analyzed. Several insertion, deletion or substitutions were discovered during the analysis of the nucleotide sequence compared with sequences reported previously. In phylogenetic tree analysis, 48 sequences isolated in this study could be further divided into five clades (A, B, C, D, and F), clade E includes reference sequences only. Two major groups were found in the six clades, distinguished by ATA and ATG initiation codons. Most of the viruses isolated in the study were in the ATG group, with fewer in the ATA branch.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/genética , Columbidae/virologia , Genoma Viral , Filogenia , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Doenças das Aves , China/epidemiologia , Mapeamento Cromossômico , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/transmissão , Infecções por Circoviridae/virologia , Circovirus/classificação , Circovirus/isolamento & purificação , Fezes/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Epidemiologia Molecular , Mutação , Fases de Leitura Aberta , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA