Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(8): 7125-7130, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28166623

RESUMO

N-doped graphene (NDG) was investigated for oxygen reduction reaction (ORR) and used as air-electrode catalyst for Zn-air batteries. Electrochemical results revealed a slightly lower kinetic activity but a much larger rate capability for the NDG than commercial 20% Pt/C catalyst. The maximum power density for a Zn-air cell with NDG air cathode reached up to 218 mW cm-2, which is nearly 1.5 times that of its counterpart with the Pt/C (155 mW cm-2). The equivalent diffusion coefficient (DE) of oxygen from electrolyte solution to the reactive sites of NDG was evaluated as about 1.5 times the liquid-phase diffusion coefficient (DL) of oxygen within bulk electrolyte solution. Combined with experiments and ab initio calculations, this seems counterintuitive reverse ORR of NDG versus Pt/C can be rationalized by a spontaneous adsorption and fast solid-state diffusion of O2 on ultralarge graphene surface of NDG to enhance effective ORR on N-doped-catalytic-centers and to achieve high-rate performance for Zn-air batteries.

2.
ACS Appl Mater Interfaces ; 8(40): 26722-26729, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27632809

RESUMO

Specific capacity and cyclic performance are critically important for the electrode materials of rechargeable batteries. Herein, a capacity boost effect of Li- and Na-ion batteries was presented and clarified by nitrogen-doped graphene sheets. The reversible capacities progressively increased from 637.4 to 1050.4 mAh g-1 (164.8% increase) in Li-ion cell tests from 20 to 185 cycles, and from 187.3 to 247.5 mAh g-1 (132.1% increase) in Na-ion cell tests from 50 to 500 cycles. The mechanism of the capacity boost is proposed as an electrochemical induced cascading evolution of graphitic N to pyridinic and/or pyrrolic N, during which only these graphitic N adjacent pyridinic or pyrrolic structures can be taken precedence. The original and new generated pyridinic and pyrrolic N have strengthened binding energies to Li/Na atoms, thus increased the Li/Na coverage and delivered a progressive capacity boost with cycles until the entire favorable graphitic N transform into pyridinic and pyrrolic N.

3.
ACS Appl Mater Interfaces ; 7(47): 26284-90, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26548376

RESUMO

Maghemite (γ-Fe2O3) nanocrystalline microspheres (MNMs) self-assembled with 52 nm nanocrystals bridged with FeOOH around grain boundaries were formed by solvothermal reaction and thermal oxidation. The unique architecture endows the MNMs with the lithium storage behavior of a hybrid battery-supercapacitor electrode: initial charge capacity of 1060 mAh g(-1) at the 100 mA g(-1) rate, stable cyclic capacity of 1077.9 mAh g(-1) at the same rate after 140 cycles, and rate capability of 538.8 mAh g(-1) at 2400 mA g(-1). This outstanding performance was attributed to the nanocrystal superiority, which shortens the Li(+) diffusion paths. The mechanism of this hybrid anode material was investigated with experimental measurements and structural analysis. The results indicate that at the first discharge, the MNM nanocrystal microsphere, whose structure can buffer the volume change that occurs during lithiation/delithiation, goes through four stages: Li(+) insertion in cation vacancies, spinel-to-rocksalt transformation, Li(+) intercalation of Li(1.75+x)Fe2O3 nanocrystals, and interfacial Li storage around nanocrystal boundaries. Only the latter two stages were reversible at and after the second charging/discharging cycle, exhibiting the hybrid behavior of a battery-supercapacitor with superior lithium storage.

4.
Nanoscale ; 6(11): 6075-83, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24781354

RESUMO

A facile bottom-up strategy was developed to fabricate nitrogen-doped graphene sheets (NGSs) from glucose using a sacrificial template synthesis method. Three main types of nitrogen dopants (pyridinic, pyrrolic and graphitic nitrogens) were introduced into the graphene lattice, and an inimitable microporous structure of NGS with a high specific surface area of 504 m(2) g(-1) was obtained. Particularly, with hybrid features of lithium ion batteries and Faradic capacitors at a low rate and features of Faradic capacitors at a high rate, the NGS presents a superior lithium storage performance. During electrochemical cycling, the NGS electrode afforded an enhanced reversible capacity of 832.4 mA h g(-1) at 100 mA g(-1) and an excellent cycling stability of 750.7 mA h g(-1) after 108 discharge-charge cycles. Furthermore, an astonishing rate capability of 333 mA h g(-1) at 10,000 mA g(-1) and a high rate cycle performance of 280.6 mA h g(-1) even after 1200 cycles were also achieved, highlighting the significance of nitrogen doping on the maximum utilization of graphene-based materials for advanced lithium storage.

5.
Phys Chem Chem Phys ; 14(8): 2617-30, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22262135

RESUMO

The processes of extraction and insertion of lithium ions in LiCoO(2) cathode are investigated by galvanostatic cycling and electrochemical impedance spectroscopy (EIS) at different potentials during the first charge/discharge cycle and at different temperatures after 10 charge/discharge cycles. The spectra exhibit three semicircles and a slightly inclined line that appear successively as the frequency decreases. An appropriate equivalent circuit is proposed to fit the experimental EIS data. Based on detailed analysis of the change in kinetic parameters obtained from simulating the experimental EIS data as functions of potential and temperature, the high-frequency, the middle-frequency, and the low-frequency semicircles can be attributed to the migration of the lithium ions through the SEI film, the electronic properties of the material and the charge transfer step, respectively. The slightly inclined line arises from the solid state diffusion process. The electrical conductivity of the layered LiCoO(2) changes dramatically at early delithiation as a result of a polaron-to-metal transition. In an electrolyte solution of 1 mol L(-1) LiPF(6)-EC (ethylene carbonate) :DMC (dimethyl carbonate), the activation energy of the ion jump (which is related to the migration of the lithium ions through the SEI film), the thermal activation energy of the electrical conductivity and the activation energy of the intercalation/deintercalation reaction are 37.7, 39.1 and 69.0 kJ mol(-1), respectively.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 27(2): 247-9, 2007 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-17514947

RESUMO

Solvent-free, composite electrolytes based on poly(ethylene oxide) (PEO) were prepared by using mesoporous silica SBA-15 with surface modification of (trimethylchlorosilane) as the filler. The samples were explored by emission FTIR spectroscopy at elevated temperatures. The results of emission FTIR spectra illustrated the dependence of crystalline PEO phase on temperature. On the basis of electrochemistry, SEM, and emission FTIR studies, the effect of inorganic filler on the ionic conductivity was analyzed, and a conclusion concerning the ion-conducting mechanism of composite polymer electrolyte was drawn. The exploratory experiments demonstrated that the emission FTIR spectroscopy is an important method to be applied in the study of lithium batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...